|
VH I'
it
f '
i

= AD-A25'9 122 0

AFIT/GCE/ENG/92D-03

DTIC

ELECTE
JAN1 1 1993

S e e d

A VHDL Interpreter for Model-Based Diagnoses

THESIS

David Robert Griffin
Captain, USAF

AFIT/GCE/ENG/92D-03

93-00088
LT

Approved for public release; distribution unlimited

v o - > S o
6o , 0

AFIT/GCE/ENG/92D-03

A VHDL Interpreter for Model-Based Diagnoses

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfiliment of the
Requirements for the Degree of

Master of Science in Computer Engineering

DTIC N0.ALeTs LiGPLCTED 8

David Robert Griffin, B.S.E.E.

Captain, USAF

December, 1992

Approved for public release; distribution unlimited

. PO LA
Usansonneed

Acecesiom Yoy

— s e

NTIS @Rasd

oos]

Justifieatien

By
_Bistrtbution/
Availablility Codes

§Avall and/or
Dist | Cpecial

|

DA

A

Preface

The program used in this research was named after Susan Calvin, a fictional character created
by Isaac Asimov. Calvin was the head robot-psychologist of U.S. Robotics and Mechanical Men. In
several of Asimov’s stories, Calvin diagnosed the robot’s failures using her knowledge of the rules

of robotics and the symptoms that the robots displayed.

I would like to thank the members of my thesis committee for the help they gave during my
research at the Air Force Institute of Technology. I would especially like to thank Major Gregory
Gunsch, who helped me through many rough areas. I would also like to thank my parents, Charles
and Bobbie Griffin, who kept my spirits up during these last 18 months. Finally, I would like to
thank Chesapeake and Taflina, who coiled their furry tails around my keyboard during long sessions

with the computer.

David Robert Griffin

Table of Contents

Page

Preface e e ii
Tableof Contents i e e iii
List of Figures e e e e e vii
Abstract L. e e e e e e e e e e ix
L Introduction L e 1
1.1 Baci{ground 1

1.1.1 Model-Based Diagnostics 1

1.1.2 VHDL e 3

1.2 Problem e 4

1.3 Scope e e e 4

1.4 Approach e 5

141 VHDLParser, 5

142 VHDLSimulator 5

1.4.3 Diagnostic Routines 6

1.4.4 Selection of Test Circuits 6

1.5 Thesis Overview 6

IL Literature Review L 8
2.1 Imtroduction 8

2.2 Reasoning from First Principles 8

2.3 Assumption-based Truth Maintenance System 10

2.4 Full Consistency Algorithm 11

2.5 Model-Based Reasoning in the Detection of Satellite Anomalies 13

2.6 Reiter’s Algorithm with Enhancements 17

III.

2.7 Abductive Diagnostic Reasoning
2.8 Modeling Digital Circuits for Troubleshooting
2.9 Summary e e e e e e e
Implementation e
3.1 Overview
3.1.1 Imtroduction

3.1.2 The VHDL Language

3.1.3 Diagnose Algorithm L0 0000

3.2 The Calvin Diagnostic System
321 VHDLParser

3.22 VHDL Simulator,

3.2.3 Diagnostic Routines

3.3 Implementation
3.3.1 Selection of a Programming Language

3.3.2 Implementation Details

333 VHDLParser

334 VHDL Simulator

3.3.5 DiagnosticRoutine

34 Summary L. e e e e e e
Results e e
4.1 Testing Calvin
4.1.1 RunningCalvin.

42 Improvements e
4.2.1 Improving the Hypothesis Generator

422 Probing

4.2.3 Extending the VHDL language

iv

21

22

22

22

22

23

25

28

32

33

34

34

39

40

46

55

58

59

59

60

67

67

67

68

4.3

4.2.4 Interfacing with an Expert System

Summary

V. Observations and Recommendations

5.1

5.2

5.3

5.4

Appendix A.

Appendix B.

Appendix C.

B.1

B.2

B.3

B4

B.5

Appendix D.

Appendix E.

D.1

D.2

D3

E.1

E.2

E3

E.4

E.5

Accomplishments
Recommendations

Summary

Supported VHDL Grammar

VHDL Source Code
FullAdder
Two Operation ALU
Two Operation ALU with Probes

Four-bit Adder

Compiler-compiler Source Code

OVverview

Parser Source Code,

Overview

Page
69

69

70
70
70

71

Appendix F.

E6 COMPH, 179
E7 COMPCPP. 181
E8 COMPINH 183
E9 COMPIN.CPP. 185
EQOMISC.CPP 188
ENENTITY.H e 189
E12ENTITY.CPP, 191
EA3GENERATEH 193
E.14 GENERATE.CPP 194
EASIDENT.H 198
EA6 IDENT.CPP 200
EITMCODEH 203
EA8 MCODES.CPP 205
EI9MISCH 209
E20 MISCCPP 210
E21PORT.H. 211
E22PORT.CPP 213
E23 PORTMAPH o 216
E.24 PORTMAPCPP, 218
E.25 PROCESS.H 220
E.26 PROCESS.CPP 222
E27SIGNALH 228
E28 SIGNALP.CPP 230

Simulator/Diagnostic Source Code e 232
F.1 Overview 232
F2 ARHPP 233
F.3 BEHAVEHPP 235

vi

F.4 BEHAVECPP e 237
F.5 BLOCKHPP e 242
F6 BLOCK.CPP it 243
F.7 CALVIN.CPP e 246
F8 CODEHPP e 253
F9 CODE.CPP e e s 254
F10 COMSENHPP e 257
FI11 COMSEN.CPP i 258
FI12INTHPP 260
FI3 MAIN.CPP e 261
F.14 MCODE.HPP 265
F.15 MCODE.CPP e 266
F.16 SIGNALHPP 271
F17SIGNAL.CPP. e 273
FA8 STATHPP e 276
F.19 STAT.CPP e 277
F.20 THESISH 279
F21 VHDLHPP e 281
F22 VHDL.CPP e 282
Appendix G. Verification of Example VHDL Source Code 286
Gl INtroductiono i 286
G.2 Zycad Source Fileso 287
G.2.1 Full-Adder 287

G.2.2 ALUwithoutProbes 290

G.23 ALUwithProbes. 294

G.24 Four-Bit Adder L 298

G3 ZycadResults. 303

vii

G.3.1 FULLADD.VHZ 303
G.3.2 ALU.VHZ (without Probes) 305
G.3.3 ALUL.VHZ (withProbes) 307
G344 4Add.VHZ 309
Bibliography e e e e e 311
VIta . . o e e e e e e 312

viii

Figure

10.
11.
12.
13.
14.
15.
16.
17.
.18.
19.
20.
21.
22.
23.
24,

25.

List of Figures

Page
Behavioral Description of an Adder Module 9
Dries’ Diagnose Algorithm 16
Dries’ Reasoner Algorithm 25
Calvin’s Diagnostic Algorithm 26
The Calvin System e 27
Calvin Initialization 27
First Sensor Check e 28
Calvin’s Diagnostic Algorithm 29
Entity Declaration for 7404 Type Inverter 30
Architecture Body for 74L04 Inverter 30
Architecture Body for 74S04 Inverter, 31
Configuration for Structuralof Decode 31
VHDL Simulator Pseudo-code L. 32
Full-adder Schematic 40
OR-gate Entity Description, . 42
FLEX VHDL Limitations 42
Entity Hierarchy 44
Architecture Hierarchy 45
Block Diagram of VHDL Simulator 47
Data Fields for SignalRecord Object 50
Functions for SignalRecord Object 50
Data Fields for Behave Object A3 |
Functions for Behave Object 52
Data Fields for Block Object 53
Functions for Block Object 53

ix

Figure
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.

Page
Data Fields for Code Object 53
Functions for Code Object 54
MCodeOp Codes. e - 54
Functions for Code Object 55
Calvin’s Diagnostic Algorithm 56
Single Bit Full-Adder Schematic 60
ALU Schematic e 61
Four Bit Adder Schematic 62
Test Data for FULLADD.VHD 65
Faults Found in FULLADD.VHD With 1082’s Output Tied High 65
Test Datafor ALUVHD 66
Faults Found in ALU.VHD With [601’s Qutput Tied Low 66
Test Data for ALU.VHD with Sensors 67

Faults Found in ALU.VHD With Probes 67

AFIT/GCE/ENG/92D-03

Abstract

Model-based reasoning permits diagnostic applications to be written without waiting for
someone to become an “expert” of the system. For model-based diagnostics, there must be a
model to reason from. This thesis explores using a VHDL description of the system as tk.at model.
A system based around a VHDL interpreter was written specifically for a model-based diagnosiic
algorithm. Currer.ly, the diagnostic system uses an algorithm by Dries. This algorithm was derived
from Scarl’s Full Consistency Algorithm. The system was designed to be modular so that different
diagnostic techniques could be implemented. It is divided into three parts: a VHDL parser, a
VHDL interpreter, and a set of routines to implement Dries’ Diagnose algorithm. The system can

find stuck-at faults on combinatorial digital circuits.

Xi

A VHDL Interpreter for Model-Based Diagnoses

1. Introduction

1.1 Background

1.1.1 Model-Based Diagnostics Several efforts at diagnosis using artificial intelligence have
been based around production systems. When the production system is questioned about areas
that it has been programmed, the system can give an answer. However, production systems have
several limitations. The first is the expert: there must be someone who knows how the unit being
diagnosed works. This person must be located, and a knowledge engineer must get the knowledge
of the unit being diagnosed. For new products, there may not even be an expert. Even after
the expert is found, the expert may not be able to explain his knowledge in enough detail for the

knowledge engineer to code into the production system.

Assuming th.e knowledge engineer locates the expert, and that the knowledge engineer can
translate the expert’s knowledge into the rules for the production system, that knowledge still
has limitations. If the production system is presented with a problem for which it has not been
implicitly or explicitly programmed, it is unable to give an answer. Since the production system
lacks deep knowledge of the unit being diagnosed, the production system cannot reason beyond
the symptoms it was programmed to recognize. With no knowledge on how the system works, the

production system cannot reason beyond the rules that are programmed.

Another problem with production systems is their rigidity. Once the production system has
been programmed to diagnose one kind of unit, the prcduction system can only diagnose that one

type of unit. If modifications are made, or if the unit is redesigned, the production system may not

work for the new model. Sometimes the production system can be updated, but this could require

re-consulting the human expert on the system.

Model-based reasoning attempts to overcome the limitations of production systems ny at-
‘empting to “understand” how the unit being diagnosed works. By comparing the model with
the faulty unit, and by knowing relationships between the components of the unit, model-based
reasoning attempts to find out which component or components are at fault. Production systems
attempt to find the faulty part by checking programmed knowledge that ties symptoms to specific
problems. Model-based reasoning uses knowledge about the interconnections of the parts, as well
as the knowledge on how each part is supposed to work, to come up with a diagnosis. Since the
model-based reasoning system usesA a model of the unit being tested, there is no need to consult an

expert about every possible fault that can happen.

Compared to diagnostic systems based on production systems, model-based reasoning systems
are a recent development. At AFIT, there have been a few thesis efforts dealing with model-based
reasoning. In 1990, Kenneth Cohen described a method for diagnosing electronic modules, and
implemented an assumption-based truth maintenance system. This-is one of the components neéded
in a model-based diagnostic system. Cohen’s method is described in greater detail in section 2.3.
(1)

Also during 1990, Flight Lieutenant Ralph Dries developed a system for detecting anomalies
in a satellite’s pitch and velocity control subsystems. A model of the satellite’s subsystems was
modeled in Scheme/SCOOPS. The' diagnostic system used model-based reasoning to find faults
by comparing this model with a simulation of the real system. Dries’ approach is discussed in

section 2.5.(6)

In 1988, Captain James Skinner used a combination of a production system and a model-
based system to diagnose the Dual Miniature Inertial Navigation system. In his Blended Diagnostic

System (BDS), the system uses production system techniques to try to find the fault. If unsuc-

cessful, the BDS tries deep model-based reasoning on the sub-unit that appears to be at fault.
(14)

Outside AFIT there have also been several efforts dealing with diagnostic systems based
on model-based reasoning. These include approaches based on Reiter’s Algorithm and abductive

reasoning, described in sections 2.6 and 2.7. However, there has not been much done on describing

the model for the reasoning system.

1.1.2 VHDL VHDL (VHSIC Hardware Description Language) is a hardware description
language for designing Very High Speed Integrated Circuit (VHSIC) chips. That is, VHDL is
a sbftware system that simulates a hardware system. A designer can use VHDL to specify the
operation of the VHSIC circuits. Once the designer has the overall behavior of the circuit specified,
the individual components can be broken down into a more detailed design. This can go all the
way down to the individual gate level. As each subcomponent is designed, its behavior can be

simulated and matched against the specified behavior.

VHDL uses three main models: a timing model, a structural model, and a bghavior model.
A VHDL system simulates each component in parallel. The timing model allows the VHDL system
to simulate each component in operating in parallel on non-parallel machines. The timing model
is event driven: Each .process (component) schedules the transactions. The timing model allows

VHDL simulations to give the same results on different machines.

The structural model decomposes the complete system being simulated into various sub-
systems. This creates a hierarchy of subsystems, where simple subsystems are connected into
higher-level subsystems. Ultimately, the higher level subsystems are connected to form the com-
plete system. Each subcomponent is the equivalent of a “black box,” each with a specified set of

inputs and outputs.

The behavioral model describes how each subsystem works. This is one of the most complex
parts of the language. The behavioral description can be as simple as single operation, or can be

complex, with looping and conditional operations.

VHDL is a powerful language for hardware description. Although it is primarily used for
digital design, VHDL has analog functions that should allow it to simulate non-digital systems.
VHDL has been standardized by the IEEE (IEEE-1076). It is also accepted by the U.S. Government

as a standard for VHSIC design(5:4).

A model-based reasoning system requires a model. Determining the model of the system to

be tested can be a difficult task. This research explored using VHDL for specifying the model.

1.2 Problem

One of the problems of model-based diagnostics is creating a model of the system to be tested.
This research effort is use a VHDL description of a circuit as the model. This avoids the need to

create an additional model for the diagnostic system.

1.3 Scope

The goal of this research was to design and implement a diagnostic system, named Calvin,
that used VHDL to describe the test system. Calvin was designed so that it can be extended to

handle diagnostic algorithms.

The following limitations applied to this research:

o Tested systems were feed-forward combinatorial digital circuits.

e A subset of the VHDL language was implemented. The subset was enough to describe the

above circuits.

e The VHDL description of the circuits accurately describe the operation of the circuit.

o Time-sensitive bebavior, such as memory, was not explored.

e Components were composed of only lower-level subcomponents, or boolean algebra descrip-

tions.

e Only the following faults were simulated:

— Output stuck high
— Output stuck low
— Input stuck high
— Input stuck low.
e If an input was stuck high or low, it was assumed to be disconnected from the rest of the
system.

o The tested system had at most one fault.

1.4 Approach

There were three main areas in this research effort: Parsing the VEDL language, simulating
the circuit, and interfacing a diagnostic method to Calvin. There also must be some means for

testing Calvin.

1.4.1 VHDL Parser The parser took an input file and represented it internally. A VHDL
grammar written for the GNU Bison compiler-compiler was used as the skeleton for the parser.
This implementation is described in Chapter III. Only a subset of the VHDL language was used

for Calvin; unimplemented VHDL constructs were ignored.

Objective: Be able to read and parse the VHDL source code files for the test circuits.

1.4.2 VHDL Simulator To perform model-based reasoning, there must be some way to

exercise the model. In this research effort, VHDL was the model; therefore, there had to be a way

to simulate the VHDL source code. Although there are already VHDL simulators in existence, this

system was designed to allow easy interfacing to diagnostic routines.

VHDL is a complex language; a full implementation of the language is well beyond the scope
of this research. A description of the VHDL subset is in Appendix A. Chapter III describes the

implementation of the simulator.

Objective: Be able to simulate test circuits and generate expected values of the VHDL signals.

1.4.3 Diagnostic Routines To perform the diagnosis on the test circuits, a set of routines was
interfaced with the VHDL simulator. The goal was to make both the simulator and the diagnosis

routines loosely coupled. Chapter II contains previous research into model-based diagnosis.

The implementation of the diagnostic routines is discussed in Chapter III, along with a
description of how they were integrated with the VHDL portion of Calvin. Chapter IV contains

extensions that were explored, but not implemented as of this time.

Objective: Select and implement a model-based diagnostic strategy, and interface it with a

VHDL simulator.

1.4.4 Selection of Test Circuits To test Calvin, there needed to be a set of sample circuits.
Since this thesis investigation was implementing a subset of the source language, circuits were

selected that only used the subset. These circuits are discussed in Chapter IV.

Objectives: Create a sample of test circuits for Calvin to analyze.

1.5 Thesis Qverview

The next chapter reviews some model-based diagnostic methods that have been used by other
researchers, including past AFIT thesis efforts. Chapter IIl describes the implementation of the
VHDL parser, simulator, and diagnostic routines. The results of the implementation of Calvin

are discussed in Chapter IV, along with a discussion of ways to enhance the diagnostic routines.

Finally, Chapter V will state the conclusions found from this research, along with recommendations

for future efforts.

-1

II. Literature Review

2.1 Introduction

There are many different ways for performing model-based diagnostics. This chapter reviews
algorithms that previous researchers developed. Included are descriptions of model-based research
done by past students of the Air Force Institute of Technology. This chapter concludes with a

review of some considerations that development of a model must address.

2.2 Reasoning from First Principles

One method of model-based reasoning was developed by Randall Davis in 1984. In it he
discussed problems with previous efforts at troubleshooting systems. Davis proposed to solve the
problems by developing a system that reasons from first principles, using knowledge of the structure

and behavior of the system (4:347).

To reason about structure and behavior requires ways of representing both. Davis based his
structure description on three ideas: modules, ports, and terminals (4:352). Modules were the black
boxes that made up the system. Information flowed in and out of the modules through ports.
Each port had two or more terminals: one on the outside of the module, and one or more on the
inside. Modules were connected by superimposing their terminals together. There were no separate
entities for dealing with wires; if a wire was explicitly modeled, it was simply another module. The

module descriptions were hierarchical. A module may be decomposed into submodules.

The behavior of the system being tested also must be modeled. To support Davis’ technique,
the behavior of the modules was described by a combination of simulation rules and inference rules.
The simulation rules described the output of the module as a function of its inputs. Inference rules
inferred the possible values of one input as a function of the rest of the module’s inputs and its

output. Simulation rules represented the flow of behavior, while inference rules represented the

to get sum from (input-1 input-2) do (+ input-1 input-2)
to get input-1 from (sum input-2) do (- sum input-2)
to get input-2 from (sum input-1) do (- sum input-1)

Figure 1. Behavioral Description of an Adder Module
(4:357)

flow of inference (4:358). An example of a behavioral description of an adder module is shown as

Figure 1. The first line is the simulation rule. The other two are inference rules.

Davis described the traditional approach to troubleshooting as a theory of test generation,
not diagnosis (4:360). The test generation approach was to hypothesize possible faults, and then
determine a set of input values that would logically detect that fault. This approach did not
ptovide any insight on determining which component to consider next. The traditional approach
also required all faults to be explicitly enumerated. Other faults, such as those caused by solder

bridging two points in the circuit, could not be diagnosed.

To avoid the problems with past techniques, Davis proposed the use of discrepancy detection.
Instead of hypothesizing faults, this technique looked for observed values that were different from
the simulated values. Misbehavior was then defined as anything that wasn’t correct (4:362). A
dependency network contained all components that could influence the incorrect output. The
components in this network were the suspects that needed to be checked. Each component was
checked by seeing if there was any assignment of values to its ports that could produce the observed
state of the entire system. Since to do this required that the behavior of the suspected component
to be temporarily ignored, Davis called this procedure constraint suspension. If a consistent set
of values could be assigned to all the ports in the system, the component was kept as a possible
suspect. However, if there was no way to assign values that were consistent with the known outputs,

the suspect component alone could not cause the observed behavior (4:364).

2.8 Assumplion-based Truth Maintenance System

In 1990, AFIT student Kenneth Cohen developed a model-based reasoning system that was
based on Davis’ reasoning from first principles. In his thesis, Kenneth Cohen created a model-
based reasoning system that consisted of three parts: a model-maker module, a diagnostic engine
module, and a truth maintenance system module. The model-maker module was used to model
the system to be diagnosed. The model-maker had to be able to generate “correct” behavior for
the system. The diagnostic engine module compared actual observations with those generated by
the model-maker module. If the diagnostic engine detected a discrepancy, the diagnostic engine
attempted to find the cause of the problem. Using constraint suspension, the diagnostic engine

tested sets of components to see if a set might cause the observed symptoms. (1:17-27)

The main thrust of Cohen’s thesis was the truth maintenance system module, called the
Assumption-based Truth Maintenance System (ATMS). ATMS was a method for keeping track of
assumptions for a model-based diagnostic system. It had three roles: it “remembered” previously
made inferences, it allowed base assumptions to be made, and it maintained an environment free

of contradictions. (1:30)

By remembering inferences, ATMS reduced computation. If a component’s value had been
calculated once, that value would not have to be recomputed for the same inputs (1:30). The
second role was to allow base assumptions to be made. This allowed other beliefs to be reasoned
(1:30). ATMS also maintained contradiction-free environments. Assumptions were usually of the
form “if there is no reason to believe =P then believe P” (1:31). ATMS retracted any assumptions

that conflicted.

Since Cohen was concentrating on the ATMS, he did not implement the model-maker module.

Instead, the model of the test system was hard-coded in Lisp. (1:36)

10

2.4 Full Consistency Algorithm

A different approach to model-based reasoning was developed by Scarl, Jamieson, and De-
laune. Scarl’s paper described a prototype system for monitoring a liquid-oxygen expert system.
The diagnostic system, called LES, determined faults from sensor data using knowledge of structure

and function of the liquid oxygen system. (13:360-361)

LES had to have a model of the system that was to be tested. This model was a network of
objects, each representing a subcomponent of the system that was to be tested. An object descrip-
tion contained the type of object. Two types of objects,commands and sensors, contain measured
or assigned values and tolerances. The LES algorithm also required three other descriptors: the
source, the source-path, and the status. The source pointed to the source of this object’s value.
The source-path determined if this object was connected to the object specified by the source. This
value was a boolean. For digital objects, these descriptors were enough to describe the object. If
the object was an analog object, a status field was required to determine the state of the object

when the source-path field was on. (13:361-362)

The fields in the object’s descriptors contained expressions that determined the value of the
object. These expressions contained the names of other objects in the system being tested. When
calculating the value of the object, the names of other objects were replaced with the value of the

other object that was named. (13:362)

Objects were divided into three categories: commands, components, and sensors. The com-
mands entered values into the system. Components took values at their input, and generated an
output value. Sensors only measured a value. They could not modify any other object in the sys-
tem. Information in the model only flowed in one direction, from outputs of objects into the inputs
of other objects. Each object was assumed to have only one output, which could be connected to

the inputs of several objects. (13:362)

11

.

The LES tested for faults whenever a command or sensor value changed. When a sensor
reported a value, it was checked by computing its expected value. LES did this by evaluating the
source-path or status expressions. Since these expressions contained the names of other objects,
these were also evaluated. The objects were recursively evaluated until the values stored in the
command objects were reached. If the observed value for the sensor was within the range of the
calculated value for that sensor, the sensor was labeled as consistent. Jf the observed and calculated

values did not match, this sensor was labeled discrepant, and LES invoked the diagnoser. (13:364)

When a command value was changed, all sensors affected by this command were checked.
The LES compared observed values with computed values, and were labeled accordingly. The first

sensor that didn’t match its calculated value caused the diagnoser to be invoked. (13:364)

During diagnosis, objects were labeled innocent, culprits, or suspect. Innocent objects were
those objects that could not cause the faulty value of the sensor. Culprits were those objects which
LES had decided could cause the fauit sensor value. If an object was not innocent or a culprit, it
was labeled a suspect. The sensor that didn’t match its calculated value was labeled the Original

Discrepancy, or OD. This sensor also could be a culprit, a suspect, or innocent. (13:362)

Scarl’s Full Consistency Algorithm for finding possible faults is as follows:

1. Pick a system object and label it as a suspect. Only objects that are upstream from the OD
are considered. LES picks suspect objects by keeping track of objects visited while calculating
the expected value of the OD. Since the sensor itself may be malfunctioning, it also will be

picked as a suspect.

2. Hypothesize a faulty state for the suspect object. Since the correct value of the object can
be calculated, any other value for the object represents a faulty state. The faulty state is not
picked randomly. Instead, the expressions for source-path or status are inverted. Fault states

are determined based on these inverted expressions.

12

3. Assume the faulty state for the object. Simulate the system and determine values for all the

SENSOrs.

4. Compare the simulated values with those of the actual system. If the simulated values are
consistent with those actually measured, the hypothesized fault is one possible explanation of
the original faulty OD. If the simulated values are not consistent with the measured values,

the hypothesized fault is ruled out.

5. If the simulated and measured values are not consistent, and there are more possible faults,
loop back to step 2 and hypothesize a different fault. If there are no more possible faults with

the object, the object is labeled innocent.

(13:364)

This algorithm requires several assumptions. The system must not have any feedback loops.
Only one fault may occur at a time. LES could handle multiple failures, but only if each failure
could be diagnosed before the next one occurred. The equations that describe the objects contained
wild card values. LES used these to represent indeterminate states. These were used to switch
out objects LES had determined to be faulty. The algorithm also assumed that the sensor polling
cycle was shorter than the length of the faulty behavior. LES must be able to determine the faulty
object before the faulty behavior changed. All objects in the system being tested could only have
one output. Those objects that had more than one output were decomposed into sub-objects, each
containing one output. Uncertainty was handled by using ranges. Tolerances were propagated
backward as a range of possible values. An overlapping range would match an expected value to a

measured value. (13:364)

2.5 Model-Based Reasoning in the Delection of Salellite Anomalies

Flight Lieutenant Dries used Scarl’s algorithm to develop a system for monitcring an Atti-

tude and Velocity Control Subsystem (AVCS) of a geo-stationary satellite. Dries modified Scarl’s

13

algorithm so that the diagnostic system did not have to invert the description of a component.
Instead, Dries included in the behavior description of the component a list of possible faults. For

each fault, the behavior description was modified so that the fault can be simulated.

Dries determined several characteristics of the language he would use to write the diagnostic
system. Because the system model would be written in the language, and the model consisted of a
network of objects, an object-oriented language would be required (6:72-73). Other considerat'ons
include a commonly used language that would produce efficient code. The language afso should run
or a personal computer. This would reduce development cost, since PC’s are relatively inexpensive
and are readily available (6:73). Languages he investigated include Smalltalk, Lisp with Flavors,

C++ and Scheme with SCOOPS.

Originally, Dries tried to use the C++ language for the model and reasoner. Borland has a
C++ compiler that is known for its efficient code generation and convenient user interface. However,
his lack of familiarity with C, along with C’s steep learning curve, prevented him from using C4++.
He then turned to SCOOPS to develop his system. Dries chose Scheme for its simplicity, symbol
manipulation and fast prototyping ability (6:75). Both the model and the model-based reasoner
were written using SCOQOPS, an object-oriented extension to SCHEME. He concluded that C++
probably would be a better language for the final diagnostic system because of its object-oriented

capabilities (6:75).

The components of the AVCS were modeled as SCOOPS objects. Using the object-oriented
paradigm, Dries created a hierarchy of component classes. At the top of the hierarchy was a super-
class called component. This class contained attributes that all the system objects have. These
included a name, a status, a list of objects connected to this object’s inputs, a list of objects
connected to this object’s output, and a state that can be transmitted to the objects in the output

list. These attributes were implemented as tnstvars, or instance variables, in the SCOOPS object.

14

The status instvar was the same as the status descriptor described by Scarl. The source instvar of

component corresponded to Scarl’s source descriptor. (6:78-79)

The individual components were instances of the component class and its subclasses. SCOOPS
automatically generates functions, known as “methods” for getting, setting, and initializing at-
tribute values. A deposit-value method propagates the value of the object to other objects in the

output-list.

Below the component class in the hierarchy was the amplifier class. Since the satellite system
was primarily analog, most of the components were of the amplifier class and its subclasses. The
amplifier class added other instvars that were needed by amplifiers. These included gain, limit and
tolerance. The amplifier class also contained a list of possible faults, such as latch-up, high/low
and zero. Dries wrote methods for this class that would simulate the operation of an amplifier,
along with possible faults states. The specific components of the AVCS system were derived from

the amplifier class. These added other instvars and modify the simulation methods. (6:80-82)

In Scarl’s system, inputs arrived via command objects, while the outputs of the system were
measured by sensor objects. Dries modeled the command object by deriving its class from the
component class. Since a sensor could itself be faulty, it was modeled as a type of amplifier with a
gain of 1 and a tolerance of .0001. The sensor class also contained a list of all objects upstream of

itself. These were the possible objects that could affect this sensor. (6:94)

The pitch control channel of the AVCS was modeled by a network of instances of the various
classes. For Dries’ research, two networks were set up: one to represent the model, and one to
represent the real subsystem. The SCOOPS “make-instance” instantiated each component. The

input and output lists formed the interconnections of each network. (6:95-97)

As stated previously, Dries took Scarl’s Full Consistency Algorithm, and modified it for his

work. Dries’ Reasoner Algorithm is described in Figure 2.

15

Find a discrepant sensor
If none found then
No fault in circuit
Else
Collect all components structurally upstream from
discrepant sensor and put into suspect list
Repeat for each suspect
Repeat for each fault hypothesis
Hypothesize a fault for the suspect
Propagate change through the model
Test all sensors for consistency
If sensors consistent then
Leave suspect in suspect list
Else
Clear hypothetical fault (not suspect)
End-repeat faults
If all faults are ruled out then
Clear suspect
End-repeat suspects
If one suspect remains then
Print out the culprit
Else
Print out the list of suspects remaining

Figure 2. Dries’ Diagnose Algorithm
(6:98)

16

Because his algorithm was based on Scarl’s algorithm, Dries’ Reasoner algorithm was still
subject to the same assumptions and limitations of Scarl’s algorithm. One problem Dries encoun-
tered was that his pitch control system was a feedback loop. Since neither algorithm would work
with a loop in the test system, the feedback loop had to be broken during the test phase (6:98).
Instead of connecting the actual objects in the networks, Dries wrote a test-loop function that took
the output of the system and injected it back into the input. When a fault was introduced into the

system, the feedback loop in the model system was broken, and the diagnostic model invoked.

Another limitation of Scarl’s algorithm was that objects could not be time dependent. Dries
overcame this by modifying the time dependent objects so they were non-time dependent. Dries’

system was still able to detect faults in those modified objects. (6:35)

When Dries ran his diagnostic program, the program was able to find almost all the faulty
components he introduced. He concluded that this was a result of the model and the test system
being exactly the same (6:109). Both the model and the pitch control system were made of the
same SCOOPS objects. Dries stated that a better test of his system would be to use a more realistic
real-world simulation, but at the same time use a computer model without time dependent objects

(6:109).

2.6 Reiter’s Algorithm with Enhancements

This approach is an extension of Reiter’s Algorithm. Where Reiter’s algorithm was applied

only to diagnosing digital circuits, this extension would cover systems that vary over time.

In Reiter’s algorithm, called DIAGNOSE, a problem consisted of a set of system descriptions
. (SD), a set of the system’s components (called COMP), and a list of observations of the system
(OBS). A diagnosis was a subset of COMP that consists of faulty components. SD U OBS (the
description of the system, together with observations of the system) must be valid assuming all

the components of the subset were faulty, and all components not members of the subset were not

17

faulty. A conflict sei was a set of components such that assuming all the components in the set are

normal is inconsistent with SD U OBS. (9:10)

The DIAGNOSE algorithm computed a set of all diagnoses by building a search tree, called
a pruned HS-tree (heuristic search tree). Nodes of this tree were labeled with a conflict set, while
the edges were set by a system component. Each node had a path label, which is the set of all
edge labels from the root to that node. The algorithm required a cousistency checking module,
called TP. This module took the SD, OBS and a subset of COMP. It returned a conflict list, if one

existed. Otherwise, it returned null. (9:10)

The HS-tree was set up by calling TP, passing it the entire COMP list. The root node was set.
to the returned conflict list. Then, for each element in that conflict list, a child node was created. It
was connected to its parent node with an edge labeled by the element. The path label was then set
to be the path from the root to that node. TP was called with the COMP list minus the elements
in this path. The returned conflict list was the label for the child node. If 0 was returned, the child
node was marked as completed. When the HS-tree was completed, the set of diagnoses was the set

of all the path labels of the nodes marked completed. (9:10-11)

This paper described a way to extend Reiter’s DIAGNOSE algorithm to handle time-varying
systems, as well as continuous devices. The continuous device was broken into a set of components.
Each component was described by one or more equations. It was assumed that the continuous
device can be modeled by a component-connection model (9:11). Each constraint also could be
localized to one particular component. This means that a constraint that was broken could be
traced to one faulty component. SD was then set as the qualitative restraints of the system,
and OBS as the set of qualitative states. The TP module was a constraint propagation module.
When it was called with a subset of components, all restraints are removed except those related
to the component subset. The propagator attempted to propagate the parameter values as much

as possible. If a propagation was made by using a constraint, the constraint was marked as used.

18

If an inconsistency was detected, the TP module stopped and returned a list of components that
have had one of their constraints marked. If the propagation halted with no inconsistencies, the
TP module returned the empty set. This meant that all the components passed to the module were

normal. (9:11-13)

To handle continuous devices, the DIAGNOSE algorithm was run using the initial set of
observations. The conflict sets generated would have at least one faulty component. When a new
observation was made, all the nodes marked completed were opened. The TP module was then
called on each of these nodes, this time using the new observations. This was done until all the

nodes had been processed. The final set of completed nodes became the new diagnosis set. (9:13-14)

2.7 Abductive Diagnostic Reasoning

One problem with Reiter’s Algorithm was that it might not pick the most “probable” faulty
component. For example, assume a component can cause one symptom 95% of the time, and a
second symptom 5% of the time. A different component could cause the second symptom 90% of
the time, but would never show the first symptom. Reiter’s algorithm would say that the only first
component was faulty, even though it was more probable that both components were faulty (8:16).

Abductive reasoning attempted to choose the most probable set of disorders.

Abductive reasoning was based on a causal network, a directed graph that describes the
problem domain. The nodes were a set of events that include disorders, symptoms, and pathological
states. The edges of the network were direct causation events. They connected an event that could
directly cause another event with no known intervening events. A problem was stated by a list of
observations, each being a node in the causal network. Scenarios were chains of causation events.
Causal ezplanations were scenarios that hold true for the problem’s observation set. Abductive

reasoning attempts to find the causal explanation that was most probable. (8:17-18)

19

Each causal event was a given a probability when the causal network was constructed. The
probabil;ty of a scenario was the product of the casual events that make up the scenario (8:18). The
goal is to maximize the probability of a scenario that explained all observations. This became a
variation of the Steiner Problem, a NP-Complete problem (8:19). The rest of this paper described

an approach for reducing complexity to polynomial time to the number of nodes in the network.

2.8 Modeling Digital Circuils for Troubleshooting

In this paper, Hamscher discussed problems with current models used in model based reason-
ing. He described a situation where a field engineer could diagnose and fix a circuit in ten minutes
using only a few probes and swapping one chip. A model-based troubleshooting program took
an entire day, and then concluded that any of 40 chips or 400 wires could be responsible for the
problem (7:2). To overcome this problem Hamscher proposed incorporating knowledge on how the
component could fail in the circuit model. He gave eight principles for modeling digital circuits.

These are summarized here:

1. Components in the model should correspond to possible repairs. There is no point in deter-
mining which transistor in the chip is bad. If any part of the chip is bad, the whole chip will

need to be replaced. This cuts down on the processing time spent in diagnosis. (7:6)

2. Model components should simplify behavioral abstraction. The only reason to represent a
function in the model is to make the behavior prediction more efficient. If it is easier for the

diagnostic system to reason about a group of components, group the components. (7:6)

3. Component behavior should represent features easy for the troubleshooter to observe. Some

features are easier and more efficient to observe than others. (7:7)

4. Components whose behavior changes every time its inputs change should be represented in
temporally coarse terms. More powerful representations take into account the function of

the circuit over long periods of time. Hamscher gives as an example the number of mouse

20

2.9

increments per second determining the number of times an interrupt line would be asserted.

(7:7)

. A temporally coarse description that only describes some of the component’s behavior is

better than no description at all. An example would be a microprocessor chip interfaced to
the mouse. The relationship between the motion of the mouse and the interrupts lines only
holds true if the clock is running. The troubleshooting program can still use this behavior to

find faults, though the entire function of the microprocessor is not simulated. (7:7)

. Encapsulate sequential circuits into a single component. This cuts down on the number

of behaviors that the troubleshooter must consider. The overall resulting behavior makes
reasoning about the behavior more efficient than considering the various behaviors of the

components of the circuit. (7:7)

. If there are known likely failures in a component, represent the failure mode in the model.

This can reduce the number of different diagnoses. (7:7)

. If a component’s misbehavior is much easier to model than the correct behavior, include

the misbehavior in the component’s model. If a component with complex behavior fails
completely, then any partially correct behavior can make the component a much less likely
suspect. Since a complete malfunction can usually be easily modeled, the troubleshooting

system can efficiently detect the failures if they are explicitly modeled. (7:7)

Summary

This chapter reviewed some current methods that researchers are using to perform model-

based diagnostics. One recurring problem is how to model the system. This effort will use VHDL

as a way of specifying a model. The implementation of such a system is discussed in the next

chapter.

21

III. Implementation

3.1 Overview

3.1.1 Introduction For a model-based diagnostic system, there obviously must be some way
to model the system to be diagnosed. One way of modeling the system is to use some form of

~ hardware description language. This thesis will use VHDL as that language.

38.1.2 The VHDL Language VHDL was created primarily for the design and verification
of large-scale integrated circuits (10:2). Its very name, VHSIC Hardware Description Language,
signifies it as a language for describing (modeling) hardware. MIL-STD 454L requires that all new

application-specific integrated circuits will have a VHDL description (5:4.5.1).

VHDL has several basic building blocks which my diagnostic system, named Calvin, must
implement. These include Entities, Architectures, Configurations, and Processes. Others will be

left for future research.

In VHDL the Entity is the most basic block in the design (10:3). The entity specifies what
objects exist in the system. They are arranged in a hierarchy, with the top entity representing the

system itself.

The Architecture describes how an entity behaves. There are two types of architectures:
Behavioral and Structural. The Behavioral architecture describes how the entity behaves in terms
of VHDL statements. The Structural architecture describes the architecture as interconnections of

entities that make up the architecture. This creates the system hierarchy.

Since an entity may have more than one architecture, there must be some way to specify
which architecture to use for the entity. VHDL uses the Configuration to bind the instances of an

entity to a specific architecture.

22

The basic simulation block of the system is described by Processes. The behavioral architec-
tures contain one or more processes to describe the operation of that architecture. All processes

are assumed to be operating in parallel.

3.1.83 Diagnose Algorithm After determining how the test system was to be modeled, the
next step was to determine if there was an error. When the diagnostic system detected an error,
the diagnostic system needed some method of determining which component of the test system
was at fault. Although there were many methods, some of which were discussed previously, this
research used a method originated by Scarl and used in a previous thesis by Dries. This algorithm

is shown in Figure 3. The method this research used had two advantages:

e No need to “invert” the VHDL source. Diagnostic methods such as those used by Davis

required a way for determining the inputs of a system, given the values of the outputs.

e Fits in with a simulator-based modeling system. Possible faults in the individual components
were determined before diagnoses. This allowed more work to be done before the actual

diagnosis.
However, there were also a few disadvantages:

o No feedback. Neither Scarl’s full consistency algorithm nor Dries’ diagnose algorithm allowed
the test circuit to have any feedback. This prevented state machines from being tested. Dries

worked around this limitation by breaking the feedback loop during diagnostics.

o Limited fault detection. The set of faults the system will look for were predetermined before

diagnosing the test circuit. If an unforeseen fault occurred, the system could not find it.

e Combinatorial explosion. The time needed to diagnose a system was dependent on the number
of suspects. This in turn was dependent on the depth and branching factor of the test circuit.
In an extreme case with only one sensor, every component would be suspect. This would

result in testing every hypothesis for every component in the test circuit.

23

The system’s diagnostic method should be easily updated when needed. This was done by
a combination of object-oriented programming and loosely coupled modules. The algorithm was

divided into two areas: Generate and Test.

$8.1.3.1 Generate Calvin first generated the various hypotheses for each component.
This was done during the parsing of the VHDL model. As an executable section of the model was
parsed, the parsed data was sent to the hypothesis generator to determine what could go wrong.
Each simulation component contained a set of instructions on how it was supposed to logically
work. This section took the correct model and generated the faulty behaviors. Although currently

this portion is only executed during parsing, it can be extended to be executed during simulation.

For this effort four common hypotheses for digital circuits were generated:

1. Input stuck high. This simulates the case where the input of a component always reads
“high.”

2. Input stuck low. This is where the input always reads “low.”

3. Output stuck high. This simulates an output that is always high. This may seem to be

the same as if an input connected to that output was stuck high. The difference is in this

hypothesis all inputs connected to the output will be pulled high.

4. Output stuck low. This is where the output line always reads low.

3.1.8.2 Test This portion implements Dries’ Diagnose algorithm. Figure 4 describes

the algorithm used by Calvin.

After Calvin found an output that did not match its simulated value, the component attached
to that output was placed in a suspect list. Then, Calvin works upstream, placing each component
into the suspect list until the inputs were reached. Calvin did this by using the structure of the

test circuit.

24

Find a discrepant sensor
If none found then
No fault in circuit
Else
Collect all components structurally upstream from
discrepant sensor and put into suspect list
Repeat for-each suspect
Repeat for each fault hypothesis
Hypothesize a fault for the suspect
Propagate change throughout the model
Test all sensors for consistency
If sensors consistent then
Leave suspect in suspect list
Else
Clear hypothetical fault (not suspect)
End-repeat faults
If all faults are ruled out then
Clear suspect
End-repeat suspects
If one suspect remains then
Print out the culprit
Else
Print out the list of suspects remaining

Figure 3. Dries’ Reasoner Algorithm
(6:98)

Calvin took each suspect from the list and tried to determine if it could cause the problem. It

went through the hypotheses that were created during the initial parsing, and simulated the fault.

The VHDL simulator was then rerun to see if that fault could account for the all the known ocutput

values. If so, that hypothesis was kept; otherwise it was thrown out. This process was repeated for

the rest of the hypotheses and suspects.

3.2 The Calvin Diagnostic System

A diagram of the Calvin system is shown in Figure 5. There are three main units in Calvin:

the VHDL parser, the VHDL simulator, and the diagnostic routines. In Figure 5 the diagnostic

routines are in the Inil, Hypothesis Generator and diagnostic blocks. The code that controls the

program flow is contained mostly in the modules CALVIN and MAIN.

25

Check sensors
Collect suspects
While more suspects
While more hypotheses
Hypothesize fault
Re-simulate
Compare all sensors with their simulated values
If consistent
Keep suspect
Else
Remove suspect
End
End
End

Figure 4. Calvin’s Diagnostic Algorithm

The VHDL parser takes the source code and generates an internal representation of the circuit.
While the parser is generating this representation, the data is sent to a hypothesis generator. This
module créates code to simulate the errors that Calvin will check for during diagnosis. The simulator
takes a current representation of the circuit and its inputs and determines what the outputs should
be. This is done first to check the outputs of Calvin’s model of the circuit against the measured
outputs of the circuit. The simulator is also used to re-simulate the circuit after a fault is introduced.
The diagnostic routines implement a version of Dries Diagnose algorithm. These routines call the

simulator modules as needed for re-simulation.

The Init block in Figure 5 is further broken down in Figure 6. First, Calvin initializes the
internal variables. Calvin then parses the command line to get the VHDL source file name, test
inputs and outputs file name, and commands. An example is given in section 4.1.1. The VHDL

source file is then opened and sent to the parser.

The VHDL parser takes a file containing the VHDL description of the system to be diagnosed

and generates an internal representation of the system. During this parsing, the internal represen-

26

HYPOTHESIS
GENERATOR

*Faulty™ VHDL DATA
STORE
VHDL
Circuit
Source Daia
VHDL
Simulated SIMULATOR "Faulty”
Val Valuves
"Real" SUSPGC(S
INIT CHECK =1 DIAGNOSE ==
In./Out

Values

Figure 5. The Calvin System

WitCalvin [} PascCommand fwZpml oy pyryey Ty Firt Check
Line/Open Files (Call Sim)

Figure 6. Calvin Initialization

tation is handed over to a diagnostic module to generate possible faults. This is the Hypothesis

Generator shown in Figure 5.

The next step is to get the current inputs and outputs of the actual circuit (called by Scarl
commands and sensors). These are contained in the test file specified on the command line. The

input signals are set to these values. Control is given to the last block in Figure 6, First Check.

First, the VHDL simulator is called to generate the sensor values that Calvin expects for a
correctly operating circuit. Calvin then compares these values with those reported in the test file.
This is detailed in Figure 7. Calvin loops through each sensor and compares its simulated correct
behavior with that of the “real world.” If all the sensors match, Calvin decides that there are no
faults and quits. Otherwise, the system calls the diagnostic routines. These routines implement
a version of Dries’ Diagnose algorithm, re-simulating the circuit as necessary. This is detailed in
Figure 8. Possible suspects are collected based on which sensor does not match the simulated value.

This routine is detailed in section 3.2.3.2. The suspects are collected in a queue. While there are

27

First Check

Sensor <= 0;

Different

Compare Sim
with real

Diagnose
Go To Next

Sensor

No

Finished. No
Faults Found.

Figure 7. First Sensor Check

still suspects, Calvin takes one off the top. Calvin then runs through the possible hypotheses for
this suspect. Each hypothesis is implemented in the simulated circuit, and the VHDL simulator
is called. The newly simulated values are compared against those in the test file. If they match,
Calvin reports that this is a possible fault in the circuit. Otherwise, Calvin rejects the hypothesis
and selects the next. Once all the hypotheses are finished, Calvin goes to the next suspect in the

queue. When all of the suspects are checked, Calvin quits.

3.2.1 VHDL Parser The parser section takes as its input the name of the file that contains

the VHDL source code. Using a subset of the VHDL language, it generates a set «f data structures

28

Diagnose

Collect Suspects

Suspect In
Queue? Finished

Get next Suspect

More

Hypotheses?

Select Hypo

!

Call Simulator

Different Compare Same

““‘Real’’ with
Sim

Reject Hypo Report Hypo

' '

Figure 8. Calvin’s Diagnostic Algorithm

29

— Entity declaration for 1/6 of 74xx04 inverter
entity 7404.inv is

port(
A:1n bit;
Y: out bit

)i
end 7404.inv;

Figure 9. Entity Declaration for 7404 Type Inverter

- Architecture body for 1/6 of 74L04 inverter
- Propagation delay determined by the average of pLH and pHL
- as given by the TTL Data Book, Vol. 2 by Texas Instruments
architecture 74L04.inv of 7404.nv is
begin
process
Y <= not(A) after 33 ns;
wait on A;
end process;
end 74L04.inv;

Figure 10. Architecture Body for 74104 Inverter

that represent the parsed source code. The grammar of the VHDL subset used in this research is

described in Appendix A.

The first part of the source code file contains entity and architecture declarations. The entily
declaration defines the components that make up a circuit, along with their interfaces. The actual
workings of the component are described by the architecture declaration. Since there can be many
ways to describe the internal workings of a component, there can exist more than one architecture
declaration for an entily declaration. For an example of multiple architectures for the same entity
consider the TTL 7404 inverter. A possible entity declaration for the gate is shown as Figure 9. The
characteristics of the gate vary depending on the technology used. An architecture body for the
74L04 inverter is shown in Figure 10. while the architecture body for a 74S04 inverter is described
in Figure 11. The parser maintains a list of currently defined entity declarations and architecture

bodies that have been declared in the source code file.

30

— Architecture body for 1/6 of 74S04 inverter
- Propagation delay determined by the average of pLH and pHL
- as given by the TTL Data Book, Vol. 2 by Texas Instruments
architecture 74S04.1nv of 7404.nv is
begin
process
Y <= not(A) after 4 ns;
wait on A;
end process;
end 74S504.1nv;

Figure 11. Architecture Body for 74504 Inverter

configuration decode_11con of decode is
for structural
for I1: inv use configuration work.invcon;
end for;
end for;
end decode_llcon;

Figure 12. Configuration for Structural of Decode
(4:123)

The VHDL simulator requires a set of processes and their interconnections. The code for
the processes is generated when the parser finds process definitions within the architecture bodies.
After the code for a process has been generated, it is handed over to the diagnostic module. The
diagnostic module generates possible fault hypotheses for the process, and returns it to tfhe parser.
The parser takes the correct behavior and the hypothesized faults, and collects them into a block

for the simulator to use.

Which architecture is used by the simulation is determined by the configuration source code.
An example configuration is shown as Figure 12. In this implementation, the parser expects a
VHDL configuration to be at the end of the source code file. When the parser has reached the end

of the source file, it returns control to the main program.

31

Initialize activation record queue
while queue not empty:
Get next time
while new time == time of next record on queue:
Compare new value of signal described by the record with the
current value. If they are equal, throw out record and loop.
If not, add record to set of signals to update.
Set value of signal to new value described by record
Collect all behavior instances whose input is connected to
this signal.
For each behavior instance collected:
Determine which process code is to be executed
Execute code, posting new signal values to the queue

Figure 13. VHDL Simulator Pseudo-code

3.2.2 VHDL Simulator The simulator is based on an Intermetrics VHDL system. This
VHDL system was described by Comeau in Chapter 1 of his thesis (3:41-61). The basic operation

of the simulator is described by Figure 13.

The simulator revolves around a priority queue that contains information for updating the
various signals in the simulation. These activation records contain information on which signal is

to be updated next, and how it is to be updated.

The first time the simulator is run, a routine is called which places activation records for
all the signals present in the simulation into the queue. Each is given a default value and an
update time of 0. This simulates the circuit being “switched” on for the first time. For subsequent
invocations of the simulator, the inppt signals to the system are placed in the queue. After the

queue is initialized, execution continues into the main loop.

The VHDL main loop first updates the system clock to the value of the top record in the
queue. Then all records that have this new time are collected. For each of these records the new
signal value is compared to the current value. If the values are different, the simulator determines

which behavior instances are connected to the signal. The signal value is then changed to its new

32

value. If they are equal, the behavior instances connected to this signal perceive no change, and do

not need to be updated.

After all the records at the new time have been processed, the simulator updates the affected
behavior instances. Since there may be many separate instances that all refer to same process code,
the simulator must first determine which process to execute. The process contains instructions on
how to simulate the process’s behavior. During execution of the process, new values may be placed
on output signals. The process execution module creates a new activation record for the signal and

places it on the queue.

After all the affected behavior instances have been updated, the simulator loops until the
queue is empty. This signifies that the circuit has reached a stable state. The output values can

then be checked.

3.2.3 Diagnostic Routines The diagnostic routines are divided into four sections. While
parsing the source code, a module generates fault hypotheses for the processes. Another module
generates suspected bad components based on comparing the simulated outputs with the actual
outputs. A third section determines which hypothesis to use for the suspect. Finally, there is a

section to re-simulate the circuit and determine if the hypothesis for the suspect is valid.

This research effort used the Scarl’s “Full Consistency” algorithm as modified by Dries. One
goal of this effort was to make Calvin modular enough so that the various modules could be
upgraded or replaced as needed. To do this, the diagnostic modules were written as loosely coupled
modules. There is little or no parameter passing between them, other than the values of the input

and output signals.

3.2.3.1 Hypothesis Generation Fault hypotheses are generated during the parsing of
the VHDL code. After each VHDL process is created from the source code, the parser calls the

fault hypothesis module. This takes the current process and generates possible faulty behaviors for

33

the process. The faults are predetermined by Calvin. Calvin generates faults for each output stuck
high, each output stuck low, each input stuck high, and each input stuck low. Only one fault at a

time is allowed in the circuit.

3.2.8.2 Suspect Collection Suspect components are those that can affect the reading of
the sensor that differed from the simulated circuit. This limits the suspects to those that directly
or indirectly drive the sensor. In Dries’ and Scarl’s algorithms, this is done by collecting each
component upstream starting from the faulty sensor. In this research this is done with a simple

depth-first search, starting with the faulty output.

3.2.8.3 Fault Generation After the possible suspects have been identiﬁed, it is the
Job of this module to “break” the test circuit. The collect suspects module creates a queue that
contains all the possible suspects that could be the cause of the fault. The fault generating module
takes the suspect at the front of the queue and causes it to break. It iterates through each fault
hypothesis generated during the parse. After the re-simulation, the outputs of the simulated faulty
circuit are again compared with those supplied from the “real world.” If they match, the candidate

hypothesis is kept..If not, the candidate is rejected.

3.2.3.4 Re-simulation After a possible fault hypothesis is selected, the circuit must
be re-simulated. The fault generating module rearranges the pointers to the process code blocks,
and re-initializes the simulator variables. This allows the same VHDL simulator that generated the

results for correct operation also to be used for the simulation of the faulty circuit.

3.3 Implemeniation

3.3.1 Selection of a Programming Language Since I had decided on an object-oriented ap-

proach, the programming language must be able to support object-oriented programming. The

34

language must be powerful enough to accomplish the task. I must also be able to use the language.

Some criteria for the language are:

e Object Oriented

As described above, several parts of Calvin are inherently object-oriented. An object-oriented
approach also makes information hiding and modularity easier. Since the only way to access
or change the hidden information is to use explicit calls to an access function, it is easier to find

logic errors in the progrtam. This also prevents inadvertent tampering with the information.

Certain aspects of the object-oriented paradigm were not initially thought to be necessary.
These included the concept of inheritance. It was later found that inheritance could be used

in the parser, simplifying and standardizing the data structures greatly.
e Ease of Prototyping

Since most of the code was to be generated from scratch, several false starts were anticipated.
Code must be easily and quickly written, without having small changes requiring massive
rewrites. Some data must be able to move through the system without having to worry
about type-casts. This feature can have some disadvantages: this type of programming can

lead to poorly-written code that may lead to recoding complications and hard-to-find bugs.
e Convenient Development System

The language should have a complete set of development tools. Although this does not nec-
essarily mean an integrated development environment, the basic tools for editing, compiling,
running, and debugging should be present and work together smoothly. For accessibility,

some or most of the code should be able to be developed on a MS-DOS based machine.
¢ Compatibility with LEX/YACC

As discussed later, a grammar for the VHDL parser was obtained from the University of

Cincinnati. This grammar was written in Bison, a GNU version of the UNIX utility YACC.

35

Bison is the GNU version of the UNIX utility YACC (Yet Another Compiler-Compiler).
These programs take a language grammar and generate C code that parses that language.
The C code is then compiled and linked with the rest of the program. The main advantage

of Bison over YACC is that it allows larger language grammars to be parsed.

Bison and YACC work with another utility, LEX. LEX takes a description of the tokens
recognized by a language, and generates C code that parses these tokens. The source files for
both LEX and Bison contain embedded C code that is inserted into the output files. This
code determines the actions that take place when certain keywords or structures have been
parsed. By using Bison and LEX with the VHDL grammar from the University of Cincinnati,
I did not have to write the actual parser. My task was limited to adding the actions to take

place one certain VHDL constructs were recognized.

The system must be able to take the output code files from Bison and LEX and link them into
the simulator/diagnostic routines. Alternatively, a separate program could be written that
would parse the VHDL source and pass the resulting information to the rest of the system
through a file. In any case, some code would have to be written using the C language (note
that this turned out to be not quite true; A GNU version of LEX, FLEX, was modified to

use C++).
o Familiarity

Last, but definitely important, the programmer must be familiar with the language. Time

spent learning a new language is time that could not be used on the research effort.

Initial candidates for the programming language were Ada, C/C++, LISP, and PC-Scheme.

A discussion of these languages considering the above criteria follows:

e Ada

36

This language is the DOD stahdard language for new programming efforts (2:8). Although
some claim it is an object-oriented language, there is some debate. It does not support
inheritance, but as noted, inheritance was not thought to be important in this effort. It does
have good support for modularity and information hiding, the desired object-oriented features
most needed for this effort. A main feature of Ada is enforcing type-checking. Although this
can lead to more reliable code, it can hamper prototyping efforts. The type-checking makes
it possible to catch logic errors eatlier in the development process. A more serious problem
is its efficiency. Ada does run on MS-DOS platforms; however, the edit/compile/run cycles
tend to be a lot longer then those of the other languages. Ada does have methods for linking
in modules from other languages, so it should be compatible with LEX/YACC. Ada’s syntax,

being based on Pascal, is not greatly different from other common programming languages.
LISP

This language is very much associated with artificial intelligence research. In contrast to Ada,
LISP has very little type-checking. It also provides a high level of abstraction not found in
“lower-level” languages such as C. It tends to be more compact than equivalent programs in
other languages.” Features such as not having to declare variables until they are used for the
first time allow very rapid programming. Although LISP is not object-oriented by itself, the
Flavors extensions add this capability to LISP. A major problem with LISP is the size of the
language; it does not fit well on a MS-DOS platform. Programming in LISP also requires a

different mind-set than more traditional languages.
PC-Scheme

PC-Scheme is a variation of LISP that runs on MS-DOS machines. It has the same pro-
gramming style as LISP, allowing rapid prototyping and smaller programs. It comes with a
well-integrated environment for programming in PC-Scheme. It also has hooks for integrating

outside code modules.

37

e C/C++

C is sometimes referred to as a “low-level” programming language. It is a powerful, but
dangerous language. Like machine language, C assumes the programmer knows what he is
doing, even when he doesn’t. Examples include lack of bounds checking on arrays, and little
type checking on parameters. Unless care is taken, this can result in obscure bugs that can
affect areas of the code far away from the original problem. C itself is not object-oriented,

although object-oriented techniques can be used.

C++ is a superset of the C language that adds several features, such as object-oriented
structures. Although the programmer can still cause obscure bugs, C++ has several features
that tend to catch problems earlier during development. These include function prototypes

and type-safe linkage. which specify function parameter types and return values.

C/C++ is available on a wide selection of platforms, including both the Sun Sparcstations
and MS-DOS machines. The UNIX operating system includes many tools for using C-based
projects. There are also good development systems for MS-DOS platforms, such as those
by Borland and Microsoft. Another advantage is that the output of Bison and LEX are
C source code files. By using C or C++ integration of the various parts of Calvin would
be much simpler, without any concerns about cross-language interfaces. Finally, I have had

much experience in C programming, as well as some with C++.

After evaluating the languages, the initial selection was to use C++ for the simulator and C
for the parser. The simulator was the most object-oriented, and would be best writ.t;en in a language
that supported such constructs. Since the output of Bison and LEX were C files, it was thought
that the supporting modules for the parser also should be written in C for ease of integration. The
diagnostic functions were rather loosely coupled to the rest of Calvin. C++ was chosen for these

functions to take advantage of the additional power and type-checking features of C++.

38

The initial configuration was a parser module separate from the rest of the system. This
would be run on a UNIX system using GNU Bison and standard UNIX LEX. The rest of Calvin
would be developed on a MS-DOS machine using the Borland C++ 3.0 development system. The
Borland environment contained both an ANSI standard C compiler and version 2.1 of C++, which
included templates (the equivalent of the Ada Generic structure)(15:33). It also came with libraries
for container classes. Familiarity with Borland products also resulted in a shallow learning curve,

allowing more time for development.

During development a copy of Bison was found for MS-DOS machines. After finding that is
was functionally equivalent to the version running on the UNIX system, the Bison code was ported
to the MS-DOS platform. A GNU version of LEX, called FLEX, was also found that would run
on MS-DOS machines. At this time, all code was ported to the MS-DOS platform, with the parser
being compiled in C and the rest of Calvin in C++. By mociifying the skeleton file for Bison, the
output source files could be compiled by the Borland C++ compiler. Now, all the source files could
be compiled by one compiler into one program. By doing this, integrating the various modules

became trivial. An additional benefit was allowing C++ functionality in the parser section.

3.8.2 Implementation Details The following sections describe how Calvin was implemented.
As described previously, Calvin can be split into three main areas: the VHDL parser, the simulator,
and the diagnostic routines. Calvin was designed so that the three areas are relatively independent

of each other and can be easily expanded.

A full-adder circuit is used as an example throughout this section. Figure 14 shows a schematic

for the full-adder. This example was taken from VHDL: Hardware Description and Design (12:18-

22)

The source consists of descriptions for an OR gate, a half-adder, and the full-adder. The

VHDL source code for the full-adder is contained in Appendix B.1.

39

——————— - - ———

1054

1052

g_,/z

g

1053

— 1055
1082

Figure 14. Full-adder Schematic

3.3.8 VHDL Parser

3.3.3.1 Introduction The parser was built around a VADL grammar written for the
Bison compiler-compiler. As the VHDL source file was parsed, several data structures were built
that represent the source code. This was done by embedding in the Bison grammar file calls to
outside modules that build the data structure as the various VHDL constructs were parsed. At
the end of the VHDL source file were configuration statements. These were handled by embedding
calls in the Bison grammar to call routines to build up the simulator objects. When the end of file

was reached, the parser surrendered control back to system.

3.8.3.2 Bison Code The University of Cincinnati VHDL grammar was for the IEEE-
1076 specification of the VHDL language, with a few modifications. These were done so that
Bison could generate a parser for the language. Bison generated a LALR(1) parser, which could
not parse the entire VHDL language as described by the IEEE specification. These modifications
are summarized in the header to the Bison code, which is in the file UV, in Appendix D.1. The
original code had three shift/reduce conflicts and three reduce/reduce conflicts. Since signal types

in Calvin were limited to type BIT, the number of shift/reduce conflicts was reduced to two and

40

reduce/ reduce conflicts to one. These modifications are documented in the part of the grammar

that parses the VHDL Type token.

As the VHDL source was parsed, an internal representation was built. As each VHDL con-
struct was recognized, the relevant information was stored in that representation. There was a
module that maintained the current information for each VHDL construct. This was kept in dy-
namic memory. When the parser recognized the start of the construct, the current information
was set to a default state. As the construct was parsed, the parser called functions that added
the newly acquired information to the current construct. After the parsing of the construct was
finished, a pointer to the finished construct was passed back, usually to a field within a higher-order

construct. Some constructs, such as signal and port lists, were passed as linked-lists.

Figure 15 shows an example entity description for an OR-gate. After the parser found the is
keyword, the grammar dictated that a port clause would follow. A call was made to port_clear() to
initialize the current port data structure. The keyword port and the “(” token were then recognized.
The parser then looked for a formal port list. This consisted of an identifier list “i11”, colon token,
a direction (in or out), and a signal type (bit). These values were placed in the appropriate fields
within the port data structure. The parser then looked for the “)” and “;” tokens. At this point
the port data structure was complete. A pointer within the module tasked with constructing this
structure pointed to the memory block that contained the information. The parser then called
a function that took this pointer and placed it within the current entity data structure. This

continued until all the VHDL source had been parsed.

3.3.8.3 FLEX Code The parser generated by Bison required a module to recognize
the tokens and keywords in the source file. This module was generated by a lexical analyzer,
FLEX. FLEX was a GNU version of the standard LEX program present in most UNIX systems.
For the purposes of this research the two were equivalent. The chief advantage of FLEX was that

there was a version that runs on MS-DOS machines. A few modifications had to be made so that

41

entity i15is .
port(
111: in bit;
112: in bit;
113: out bit
)

end;

Figure 15. OR-gate Entity Description

Identifiers | Identifier must be the letter I followed by
a three digit number (1002, 1234)
Integers Sequence of digits

Reals Not permitted

Figure 16. FLEX VHDL Limitations

Borland C++ could compile the output file from FLEX. These modifications are summarized in

Appendix C.

T} ~ input file to FLEX described how the tokens of the grammar were to be recognized. Also
included were the keywords and tokens for the VHDL grammar. The tokens and keywords style
for VHDL and Ada were similar. This made it possible to take a LEX file used in the CSCE663
Compiler Theory and Implementation course and modify it. This file was jointly written by Captain
Chester A. Wright and me. The additional keywords required by VHDL were added to this file.

The file is named UV.LEX, and is in Appendix D.2.

To speed development, several features of VHDL were restricted. The chief of these were
identifier names. Identifiers throughout Calvin were defined as integers. To make it easier to come
up with the handles, the VHDL identifiers were defined to be the letter ‘I’ followed by a three digit

number. The features restricted by the FLEX input file are summarized in Figure 16.

A complete description of the supported VHDL grammar is given in Appendix A.

3.3.3.4 Internal Date Structures As each VHDL construct was parsed, the necessary

information was recorded in the data fields of a corresponding internal data structure. As parsing

42

continued, the data structure might then be inserted into a field of a higher echelon structure. This
structure could in turn become a field in an even higher structure. At the top of the hierarchy were
two data structures: a list of entity declarations, and a list of architecture declarations. Figure 17
shows the complete hierarchy of the entity declaration, while 18 does the same for the architecture
structure. The individual modules that make up these hierarchies are in Appendix E. The names

of the modules correspond to the objects in the hierarchy.

Since this section was so tightly bound to the Bison module for the parser, it was originally
written in straight C code using an object oriented style. At the time it was originally written,
the GNU Bison was being used to generate C code. It was later ported to a MS-DOS system and
compiled with the same-C++ compiler as the rest of Calvin. Unfortunately time did not allow this
module to be rewritten in straight C++ code. This would have resulted in more consistent data

structures, resulting in more robust code that is easier to modify (and debug!).

Since an object-oriented approach was used for the data structures and associated functions,
each of them tended to have the same structure. The routines for each structure were collected into
a single module, separate from any other structure. The actual data structure itself was stored in
the heap memory. Each module contained an internal pointer that pointed to a current instance
of the structure. This structure, known as the curreni structure, was the one that was currently

being parsed.

Each structure had a clear routine: this initialized the internal variables and set th~ internal
structure pointer to NULL. For list-type structures there was a routine to create a new object and
add it to the front of the internal list. Next, there were a set of functions that added the values to
the structure. These functions were called by the parser as the appropriate value was determined.
Sometimes these functions added pointers to other data structures; other times a value was added
to the field. After the object had been parsed, there must be some way for the outside program to

use the structure. Another function handled this task by returning the address of the current data

43

id
name
signal list > id
compdist type
compinst _lst next
process
next * id
port * id
next number
direction
type
next
*1 name
entity
portmap *| assoc_list > left
right
next
*] mcode * code
prev
next

Figure 17. Entity Hierarchy

structure. Usually this was inserted into a data field of another data structure by corresponding
functions in the higher structure. Finally, there were print functions that printed out the values
of a data structure. One function displayed the current structure, while another described the one

passed by a pointer reference.

8.3.3.5 Translation to Simulator Data Structures The parser translated the internal
representation of the source code into class instances usable by the simulator when it parsed the
VHDL configuration statements. In this effort, the configuration source must come at the end of the

source file, after all the architecture and entity declarations have been parsed. As the configuration

44

id

name

signal list

comp ist

comp_inst_lst

process

next

» id
type
next
> id
port > id
next number
direction
type
next
*1 name
entity
portmap » assoc_list *] left
right
next
*] mcode *1 code
prev
b next

Figure 18. Architecture Hierarchy

45

information was parsed, Calvin generated the simulator objects. The information given in the

configuration section determined the construction of these objects.
38.3.4 VHDL Simulator

3.8.4.1 Introduction This section describes the VHDL simulator section of the Calvin.
The flow of the simulator is first described, followed by a discussion of each of the main C++ classes

used to implement the simulator.

3.9.4.2 Overall Flow The structure of the simulator is shown in Figure 19. These
functions are in the module VHDL.CPP, in sections F.21 and F.22 in Appendix F. The simulator
is built around a priority queue of activation records. Each activation record has three fields: the
name of the signal to change, the new value of the signal, and when it is to be updated. Priority
in the queue is based on the time stamp of the activation records, with earlier times towards the

front.

The Process low_time() function first sets the current simulation time by examining the
top activation record on the queue. All activation records with the new time are then pulled from
the queue. As each record is removed, the value of the signal specified in the record is checked
against its current value. If there is no change, the activation record is ignored. If there is a change,

the signal’s value is set to the value in the activation record.

Signals are connected to objects that represent how an architecture behaves. In Calvin,
these are called Behave objects. When a signal changes value, all Behave objects connected to
that signal must be updated using update_behave(). These Behave objects are specified by the
signal’s conns list. The label conns is the equivalent to the “conns” that Comeau describes for the
Intermetrics VHDL system. In tl.1e Intermetrics system, “conns” is the pointer to a list of behavior
instances for which this signal is an input (3:50). The identifiers of these objects are collected into

a set object. This is a container class defined in the Borland library that allows only one copy of

46

Posted Activation Record
-QUEUE Execution
Activation Record
Code Section
. Behave Instance
Process_low_time = Update_behave

Time

Simulation Time

|

Behave Instance

Process_init

Figure 19. Block Diagram of VHDL Simulator

47

a member to be in the set. This keeps the simulator from updating a Behave object twice during

the same simulation time.

After all the signals with the same simulation time have been removed from the queue, the
simulator updates the Behave objects that the changed signals drive. Each Bekave object references
a Block object. This object contains a set of code sections that describe how the Behave object
works. Then, according to the hypothesis generated during the parsing, the simulator takes one of

the code sections from the block and executes it.

The code section is a list of opcodes, which are discussed in more detail below. The object can
pull in current signal values through the input port list of the Behave object. Other opcodes perform
calculations. The simulator handles output signal values by posting them to the priority queue.
The M_POST opcode specifies the modified signal’s name, its new value, and the propagation
delay of the block. The simulator builds-an activation record from this information and inserts it

into the priority queue, completing the simulation cycle.

Since at the beginning of simulation time the queue is empty, there must be some way to
start the simulator. The process_init() function handles this by calling update_behave() for
each Behave object in the simulator. Any Behave objects that change a signal value will place
an activation record in the queue. The earliest activation record is then pulled from the queue,
starting the simulation. The simulator will then cycle until the queue is empty. This signifies that
the circuit has reached a stable state. If the circuit has feedback, it is possible to design a circuit
that will never be stable. This effort assumes only feed-forward combinatorial circuits; these will

always reach a stable state.

3.3.4.8 Microcode The simulation of the circuit’s components is handled by a “mi-
crocode” interpreter. This code is in modules MCODE and CODE, in Appendix F. Instead
of generating C source code like the Intermetrics VHDL system, Calvin generates opcodes for an

interpreted language, which will be referred to in this thesis as “microcode” or “mcodes.’

48

The microcode interpreter is stack-oriented with a separate set of registers. This style was
inspired from the Hewlett-Packard line of programmable calculators, which I have used for several
ye'ars. Operands are pushed onto an internal stack, which is then used by the operators. An
auxiliary set of registers can hold values that need to be saved from change. A more complete

description of the opcodes is discussed later.

3.8.4.4 Data Structures To speed development of Calvin a “few shortcuts” were taken.
Several places within the various objects required a set of values. An attempt at using the Set
class supplied by Borland was unsuccessful, so an array was used instead. In most cases, the object
used an integer array along with an index variable that marked the r;ext empty slot in the array.
The length of the afray was defined in the header files as MAX _xxx_LEN. Since values were only

added to the array, no special garbage collection routines were needed.

As Calvin developed, the maximum array lengths were adjusted as needed. This method of

managing data collections was wasteful of memory; however, lack of memory never was a problem.

Another shortcut dealt with identifiers. Using proper software engineering practices, there
should be a separate identifier class. To speed the development of Calvin all identifiers were defined
as integers. This also simplified the internal operand stack for simulating the process code sections.
By having both identifiers and signal values defined as integers, the stack could be implemented
as a simple integer stack. An alternative would have been to create a new data object that would
be a union of identifier type and signal value that included a field determining which was which.

Implementing future data types other than BIT will require this approach.

3.8.4.5 Stgnal Record Class The signal object is used to connect the various processes
of the simulated circuit together. The module that defines the signal object is module SIGNAL,
in Appendix F. The signal object in the simulator is derived from the Intermetrics’ signal record as

described by Comeau (3:3.10). Figure 20 describes the data fields for the signal record object. The

49

id Signal Identifier

name]] String name for signal

cval Value of signal

conns[] | Behave instances connected to this signal
last_conn | Last conns

driver_bi | Behave instance that drives this signal

Figure 20. Data Fields for SignalRecord Object

SignalRecord | Constructor

get_id Return signal identifier

print Print signal record (debugging function)
add_conns Add behave instance to conns list
get_conns Return pointers to conns list

set_cval Set signal value

get_cval Get current signal value

set_driver_bi | Set driving behave instance
get_driver_bi | Get driving behave instance

Figure 21. Functions for SignalRecord Object

ID field uniquely identifies the signal in the circuit. The name field is used for the user interface.
The current value of the signal is maintained by the cval field. The list of behave instances that
are driven by the signal is kept in the conns array. These instances are those that will be updated
whenever the value in cval is changed by a record being de-queued from the activation record
queue. last_conn is an index into the conns array. It points to the next available slot in that

array. Finally, driver_bi is the identifier of the behave instance that drives the signal.

A list of functions available for the SignalRecord object is in Figure 21. Like most objects, the
ID of the signal can be obtained by calling get_id(). The functions add_conns() and get_conns()
allow access to the list of Behave objects connected to the signal. The value of the signal is set
by set_cval(), and obtained by get_cval(). Access to the name of the Behave object that drives
the signal is through set_driver_bi() and get_driver_bi(). For debugging, print() was written

to display the data within the signal object.

3.8.4.6 Behavior Instance Class When the VHDL simulator changes the value of a

signal, that signal returns a set of circuit components that must be updated. Each of these com-

50

id Behave identifier
block_id Block associated with this behave
code_select | Current hypothesis in use for simulation

input[] List of signals tied to behave inputs
last.in Last input added

output|] List of signals ties to behave outputs
last_out Last output added

Figure 22. Data Fields for Behave Object

ponents is simulated by a Behave object. The source code for these objects is in the module

BEHAVE, in Appendix F.

The private data fields in the Behave object are shown in Figure 22. As in most objects, the
Behave object contains an identifier id. Each Behave object also contains a set of input signals and

a set of output signals. In Figure 22 these are the fields input|[], last_in and output[], last_out.

The code for simulating the Behave object is contained within a separate Block object. The
block object is defined in the BLOCK module in Appendix F. The ID of the Block object is
kept in block_id field. Code_select determines which code selection to simulate in the Block object.
This field is kept within the Behave object since there might be many instances referring to the

same Block object, each selecting its own code.

The purpose of having both Block and Behave objects was efficiency. In VADL there can
be several instantiations of the same object. An example is an adder constructed with two XOR
gates. When the XOR gate is defined in the source, a Block object is created to allow an XOR
gate to be simulated. To avoid duplicating the Block for both XOR gates in the full adder, two
Behave objects are created instead. Each of the Behave objects points to the XOR block with
the Behave object’s block_id field. Although the code section for XOR. might not be long enough
to justify breaking it out of the Behave object, other objects might be. This is especially true

once the various fault hypotheses are included.

A list of routines that can be used on Behave objects is shown as Figure 23. There are

two constructor functions. Both reset the indexes for the input signal and output signal arrays.

51

Behave Constructor

getid Return Behave identifier
set_code_select Select code for execution
get_current_select | Get current code select
set_block.id Set block identifier

get_block_id Get block identifier
get_code_count Get number of hypothesis
add_input Add signal to input of Behave
get_input Get ID of signal tied to input
getinput_count Get number of input signals
add.output Add signal to output of Behave
get_output Get ID of signal tied to output
get_output_count | Get number of output signals
print Print Behave (debugging function)

Figure 23. Functions for Behave Object

In addition, one constructor allows the ID of the block to be set. The other constructor lacks

parameters; this is required by C++ for créa.t.ing an array of these objects.

The Behave objects include several access functions. The function get_id() returns the ID of
the object. To hypothesize faults, or to use the correct, behavior requires a call to set _code_select().
Passing a value of 0 to the object through this function allows the component to be simulated cor-
rectly (no faults). The current fault number is obtained by sending the block object get_current _select.
To determine which Block object is to be executed for the Behave object, the simulator calls

get_block_id().

A group of three functions handles access to the input signals for the object. The parser
calls add_input() to add a new signal to the Behave object. To get the ID of an input sig-
nal, the simulator calls get.input. Finally, the current number of input signals is obtained via
get_input_count(). A similar set of functions handles the output signals. Finally, for debugging

purposes, a print function prints a description of the Behave object.

3.3.4.7 Block class The purpose of the Block class of objects is to hold references to
the various code sections that could be run to simulate a particular VADL architecture. The source

code for this object is in module BLOCK, in Appendix F. These are kept as an array within the

52

id Behave identifier
sim_code_id[] | list of code ID’s for this block (process)
last.code_no | Last code number

Figure 24. Data Fields for Block Object

block Constructor

getd Get block identifier

add_code Add new process code ID to code list
get_code Get code ID from code list
get_code_count | Get number of hypotheses in this block

Figure 25. Functions for Block Object

Block object. In all cases the code section that simulates correct operation of the architecture is

in position 0. Figure 24 contains a complete list of the private data fields within the Block object.

The functions available to the Block object include a constructor, a function for returning the
Block’s ID, and functions for adding and retrieving the code section ID’s. A full list of functions

is listed in Figure 25.

3.3.4.8 Code Class Each Block object contains at least one code object for simulating
the operation of the architecture. The code object is defined in the CODE module, in Appendix
F. The code object can be thought of as a “program” for simulating a process. It contains an ID
to allow it to be referenceci by the appropriate Block. The “program” is stored as an array of
MCode objects, which are described later. Figure 26 contains a list of the data fields within the

Code object.

The functions available for the Code object, which are summarized in Figure 27, are straight-
forward. The get_id() function returns the Code’s ID. The parser uses add.mcode() while
creating the process block. The code is simulated by calling the execute() function. A debugging

function print() lists the program to the screen.

id Code identifier
code_blk([] Program storage
last_code_no | Next available line in program storage

Figure 26. Data Fields for Code Object

53

get_id
add_mcode
execute
print

Get identifier for code

Add new mcode to program
Execute program

Print program (debugging function)

Figure 27. Functions for Code Object

M_NULL
M_GET
M_POST
M_PUSH
M_NOT
M_AND
M_OR
M_XOR
M_END
M_NAND
M_NOR
M_POP
M_STORE
M_RETRV

Null opcode

Get signal (signal no.)

Post signal (signal no., value, delay time)
Push

NOT (value)

AND (valuel, value2)

OR (valuel, value2)

XOR (valuel, value2)

End execution

NAND (valuel, value2)

NOR (valuel, value2)

Pop (and discard) value on top of stack
Store (addr) value into register
Retrieve (addr) value from register

Figure 28. MCode Op Codes

3.3.4.9 MCode class The purpose of this class is to gather all the available operations

together. The only data field is the

A list of them-is shown in Figure

listed in Appendix F. The opcodes are negative values. If the simulator encounters a positive value,

it is interpreted as data and pushed onto the stack. When the code section for the process is

opcode. The opcodes are defined in the header file for the class.

28. The complete class definition is in the MCODE module,

finished, the M_END opcode signals the simulator to stop.

M_NULL is the equivalent of a NOP. It was present for debugging the simulator. M_GET
and M_POST handle passing signal values into and out of the process. In both cases the signal
number used by the instruction is on the top of the stack This number is an index into the input or

output signal arrays in the executing Behave object. M_POST requires two additional parame-

ters: the new value for the posted

the signal.

signal, and how far in future will the new value be assigned to

54

MCode Constructor

execute Execute the instruction

print print mnemonic (Debugging function)
get_op.code | Return op code

Figure 29. Functions for Code Object

M_POST creates an activation record using the signal name, value and delay time. This
delay time is added to the current simulator time in order to determine were in the priority queue

the new activation record will be placed.

M_AND, M_OR, M_XOR, M_NAND, and M_NOR perform t.}_neir named operations
using the top two operands on the stack. The result is placed back on top of the stack. M_.NOT

inverts the value of the top of stack. A ‘1’ value is changed to ‘0,” while a ‘0’ is changed to a ‘1.’

Some hypotheses require an opcode for ignoring the current value of a signal. The M_POP
opcode handles this by discarding the current top of stack. The r.ew value can then be pushed onto

the stack.

For certain faults, a value below the top of thé stack may need to be changed to reflect a
certain fault. The top of the stack can be saved and later restored by using the M_STORE and
M_RETRV opcod(;s. These codes save the top of stack in a specified register. The top of stack can
then be removed, and the value below cuanged. These opcodes also can be later used to implement

temporary storage for other uses not required at this time.

Figure 29 contains the list of functions for the MCode class. The execute() function
executes the instruction. The value of the opcode is returned via get_op_code(). The function

print() was used to debug the system.

3.8.5 Diagnostic Routine This routine implements a version of Dries’ Diagnose algorithm.
A flow diagram of Calvin’s implementation is in Figure 30. (This is the same diagram as Figure 8.)

The algorithm is contained in the module CALVIN, listed in Appendix F.

55

Diagnose

Collect Suspects

Suspect In
Queue? Finished

Get next Suspect

No More

Hypotheses?

Select Hypo

!

Call Simulator

Different Compare Same

“‘Real’’ with
Sim

Reject Hypo L Report Hypo

' 3y

Figure 30. Calvin’s Diagnostic Algorithm

56

3.8.5.1 Fault Determination During the diagnostic phase Calvin is given a list of input
values and recorded output values from the “outside world.” Calvin sets the circuit’s inputs to those
supplied and simulates the circuit. Calvin checks each sensor to see if it matches the recorded value.

If all match, Calvin declares that the circuit has no apparent problems.

3.8.5.2 Collection of Suspects If an output value does not match the expected value,
Calvin calls a routine to collect possible suspects. This routine takes the parsed representation of
the circuit and determines which component could affect the errant output. These are placed in a

queue.

Currently, suspects are generated by using a depth-first strategy. The component connected
to the output is placed first in the queue. Then the collection routine is called recursively for
each signal attached to that component’s inputs. Recursion ends when it reaches an input signal.
Although not very efficient, this module is almost totally independent of the rest of Calvin, and
can be easily modified or replaced. The only output is the queue containing the list of suspects. It

can be rewritten without affecting the rest of the system.

3.3.5.8 Disproving Hypotheses Calvin takes each suspect from the queue and modifies
it according to the hypotheses generated during parsing. Each suspect body has a list of behaviors
that were given it while it was being parsed. The fault is simulated by changing the active behavior
to one of the fault behaviors. Calvin iterates through these hypotheses, re-simulating the circuit
after the behavior has been switched. Calvin then checks all the simulated outputs against those
that were supplied. If they match, Calvin prints a message stating the component’s name and the
hypothesis’ name. Calvin then continues with the rest of the hypotheses. When all the hypotheses
are finished for a suspect component, the behavior of that component is reset to the correct behavior.

Calvin pulls the next suspect from the queue and the cycle repeats.

57

8.4 Summary

This chapter gave an overview of Calvin. This included the generate and test areas. Next was
a more detailed look at Calvin, breaking it down into parsing, simulating and diagnostic routines.
Following this was a discussion of the implementation of Calvin. This included reasons behind the
languages selected, and detailed descriptions of the parser, simulator, microcode, data structures
and diagnostic routines. The source code for Calvin is in Appendices D through F. The next

chapter will describe some test files used, and will discuss ways that Calvin can be improved.

58

1V. Results

4.1 Testing Calvin

Three circuits were used to test the diagnostic powers of Calvin. These were a full adder, a

two-operation ALU, and an adder.

Figure 31 is the schematic for the full-adder. The scheﬁatic for the ALU is Figure 32 and for
the adder is Figure 33. In Figure 32 the dashed lines are the probes inserted into the circuit. The
actual VHDL code for the full-adder is in Appendix B.1, the ALU without probes in Appendix B.2,
the ALU with probes in Appendix B.3, and the adder in Appendix B.4. Appendix B.5 describes a
five-bit two’s compliment ALU that performs addition and subtraction. This circuit is not discussed
in this chapter; it was included as another example that Calvin can use. To validate these files, they
were processed with the Zycad VHDL system. Since Calvin does not have libraries implemented,
minor modifications were made to the files. Complete details of the modifications are in Appendix
G. Appendix G also contains the results from the Zycad system. The example circuits performed

as expected.

In Calvin all VHDL identifiers are limited to the character ‘I’ followed by a three-digit number.

To keep track of the various components, the names were kept consistent.

The single-bit full adder was used during development. Although small, this circuit contained

all the elements supported by the VHDL simulator in Calvin.

A two-operation ALU simulated a system with multiple independent subsystems that had
little interaction. The ALU performs either an AND or an OR function on the two sets of inputs,
depending on a select line. Since these are logical functions, the operation on one bit does not
affect any other bit. The only area that affects all operations is the select line. The circuit was

modified by routing the internal lines to outputs (sensors).

59

] (] [}
' —\ ' 1054
— Y\ .) '
1052 . : y/ A
L/ ' 1081 4
| P]]]
] —_—] 1092
1053 \ ; ‘
' | '

Figure 31. Single Bit Full-Adder Schematic

The four bit adder simulated a system in which the subcomponents interacted with each
other. The adder consisted of multiple copies of the original full-adder, with the carry-out of one

bit connected to the carry-in of the next. A faulty device will tend to affect many sensors.

4.1.1 Running Calvin This section discusses how Calvin was run. First is a description of
how to run Calvin. Then two examples are given, the full-adder and the ALU. In the examples the
correct operation of the circuit is validated. This is done by using sets of data that show correct

operation of the “real” circuit.

Calvin took the source code for the test circuits and an input file that contained test inputs
and outputs and attempted to find the problem (if one existed). The test outputs for the “actual”
circuit were calculated before running Calvin. To validate correct operation of Calvin, this was
done for correct operation of the circuit first. Then, Calvin was tested with errors placed in the
circuit. The results of the errors were calculated and supplied to Calvin as the outputs of the
“actual” circuit. In all cases Calvin did find the fault when the fault aflected a sensor reading.
Unfortunately, most of the time Calvin also would find many other possible problems that also
could cause the same sensor values. Adding sensors to internal signals of the circuit cut down the

number suspects. In effect this was adding probes to the test circuit.

60

1595

1510

1520

1511

b s
&)
|
2
5

p 1530
i 1004

2
g
&

1000
=
(=]

)

pat
o
y—
p—

1521

1512

1612

AL

)

1522

1622

YIi

Figure 32. ALU Schematic

61

na3

1532

ul g & g 8 g b
i !
] 1
]]
1 1
] 1
] []
] [}
) o S
A a)
o o~
8 g 8
(o= ———— I!Il. [2nknind tadiaiintaihatnghel i [Antintind Shatiiiadiadiiiadiey il |= =y ss=- Olll.
“ 3 _ " = “ 5 “ " g "
! a ' ! 4] ! a H i a :
" " " “ " “ “
—— — —— o——)
1 N i AN N i IR ZE '
" ; “ : " “ "
' H ' I H ' H
[N NN —— . | P S S [[P R I leabeccracwccawhbe

62

nio
1120
1100
121
1ni2
1122
i113
na3

nii

Figure 33. Four Bit Adder Schematic

The user interface to Calvin was designed so that in can be run in batch mode. The user
supplies a set of flags (detailed in the module main.cpp), a source file, and a test file. The output
could then be re-directed into a file and examined. This allows many test cases to be run at the
same time. Most of the flags determined what information is displayed. The others controlled
small improvements to Calvin. When Calvin determined that a suspect could account for all the
outputs, it displayed it to the standard output device (screen or redirected-output file). After each

diagnosis, Calvin printed out information about that run. This information included:

how many suspect components that were collected,

how many hypotheses that Calvin generated,

how many different faults that could cause the supplied circuit’s outputs,

"the number of activation records posted by Calvin’s VHDL simulator,

the number of Behave objects that were updated,

total number of simulations done by Calvin.

Idealy, these numbers should be as low as possible. The first three numbers determine how
well Calvin could find the actual culprit. The first, the number of suspects collected, show how
well the suspect collection routine discriminated among the circuit’s components. The next value,
number of hypotheses checked, shows how many hypotheses Calvin checked during the diagnosis.
This higher this number is, the more hypothesis Calvin had to run to determine if a suspect could
cause the reported outputs. The third number is how many hypotheses Calvin found that could
cause the reported outputs. Since one assumption was that there was only a single fault, ideally
this value should be one. The last three numbers give an idea of how many computations that
Calvin must do. Since these numbers are closely related to the circuit’s input values and number
of hypotheses that Calvin test, they are not important. They were used mainly as debugging tools

during implementation.

63

For a detailed example, consider the Full-Adder shown in Figure 31. While the full-adder
source was being parsed, Calvin generated mcode-blocks that would simulate the correctly-operating
version.of each process in the full-adder. After each block was created, it was sent to a hypoth-
esis generating module. This module generated additional mcode-blocks to simulate the errors
that Calvin was programmed to check. These were gathered and placed in a behave object that
represented the process. A sample test file is shown in Figure 34. The top eight lines simulated
correct behavior of the circuit. The following lines simulated the circuit after certain faults had
been introduced. Calvin was run, showing the values Calvin thought should be at the output, as
well as the possible faults Calvin found. For the correct outputs, Calvin reported that its outputs

values matched those reported. Calvin then stated that no errors were found.

The first fault introduced was the output of 1082 stuck high. In this case, no matter what
the inputs are, the carry-out will always be high. The first set of input had all inputs low. In this
case both outputs also should be low, which Calvin also determined. Since the output values as
determined by Calvin did not match those supplied by the test file, Calvin attempted to find the
fault. The first step was to collect the possible suspects. Working upstream from 1082 (the carry-
out OR-gate), Calvin determined that 1082, 1081, 1080, and 1080 could be at fault. The duplicate
1080 component came from looking at the inputs of 1081 as well as 1082. An improved routine
that stopped the depth-first search when a previously-found suspect was encountered eliminated

the duplicate 1080.

Calvin simulated each hypothesis for a suspect component, starting with 1082. When Calvin
was parsing the VHDL code for an OR-gate, it determined that there were six possible problems
that could happen to the gate: output number 0 stuck high/low, input number 0 stuck high/low,
and input number 1 stuck high/low. Calvin hypothesized each of these problems, and found that

the following could cause the reported values:

e output #0 stuck hi,

64

Inputs Outputs Comments
1051 | 1052) 1053 1054 1055
(X) | (Y) | (Cin) || (Sum) | (Cout)
0 0 0 0 0 Correct operation
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
0 0 0 0 1 1082 Out stuck high
0 1 1 0 1 1082 Out stuck high

Figure 34. Test Data for FULLADD.VHD

Output #0 stuck hi at 82
Input #0 stuck hi at 82
Input #1 stuck hi at 82

Output #1 stuck hi at 81

Output #1 stuck hi at 80

Figure 35. Faults Found in FULLADD.VHD With 1082’s Output Tied High

e input #0 stuck hi,

e input #1 stuck hi.

Calvin did the same with the rest of the suspects. A complete list of possible faults Calvin found is
in Figure 35. Note this does include the introduced fault, 1082 output stuck high. The half-adders
each had 8 hypothesis (each of the four ports stuck high and stuck low), and the OR-gate had 6

(three ports stuck high/low). This meant Calvin checked a total of 22 hypotheses.

In the next example, the same fault (1082 output stuck high) was kept in the simulated “real”
circuit. But this time the inputs were 0, 1 and 1. Calvin simulated the circuit and found its outputs

the same as those reported to Calvin. Calvin decided there was no problem with the circuit.

A more complex example uses the ALU shown in Figure 32. Sample inputs to the circuit,
along with the outputs from a “real” circuit are in Figure 36. The circuit without the probes was
used first. To do this, the output signals 1710-1712 and 1810-1812 were commented out, and internal

signals with the same name were declared. This VHDL code is in Appendix B.2. Values for the

65

Inputs Outputs

1595 | I510 | 511 | 512 { 1520 | 1521 | 1522 || 1530 | I531 | 1532
S A0 [Al [A2 | BO | Bl B2 Z0 Z1 72

0 1 1 1 1 1 1 1 1 1

0 1 1 1 0 1 1 0 1 1

1 1 1 1 0 1 1 1 1 1

1 1 0 0 0 1 1 1 1 1

0 1 0 0 0 1 1 0 0 0

0 1 1 1 1 1 1 0 1 1

Figure 36. Test Data for ALU.VHD

Output #0 stuck low at 605
Input #0 stuck low at 605
Output #0 stuck low at 603
Input #0 stuck low at 603
Input #1 stuck low at 603
Output #0 stuck low at 601
Input #0 stuck low at 601
Input #1 stuck low at 601

Figure 37. Faults Found in ALU.VHD With 1601’s Output Tied Low

correctly working “real” circuit are at the top of the table, with simulated fault conditions and
their output values below. The first fault introduced was shorting output of gate 1601 low. With all
inputs high, and the AND operation selected, Calvin determined that all the outputs also should
have been high. Comparing against those supplied by the “real” circuit, Calvin found one of the
components tied to the 1530 output was at fault. The suspects were 1605, 1604, 1603, 1606, 1602,
and 1601. Since none of the other components affect the output 1503, Calvin did not hypothesize
any of others. After checking out all the hypotheses for the 1601-1606, Calvin came up with a list
of possible suspects. These are in Figure 37. Calvin did find the fault, 1601’s output stuck low,

although it also came up with seven others.

This case was re-run using the ALU circuit with probes (Appendix B.3). The same inputs
and outputs were used, with the additional values for the probes supplied. These values are in
Figure 38. With the additional information, Calvin was able to narrow it down to three suspects,
which are listed in Figure 39. Since 1710 along with 1530 was low, the hypotheses for 1603 and 1605

were ruled out. No hypothesis for these components could account for the ‘1’ value at 1710.

66

Inputs Outputs

1595 | 1510 | 511 | 512 | 1520 [1521 | 1522 || 1530 | 1531 | 1532 | 1710 | 1810 | 1711 | 1811 | 1712 | 1812
S A0 | Al [A2 |BO |BI |B2 |1Z0 |Z1 |Z2 ¢AO | YOO | YAl | YOl | YA2 | YO2
0 1 1 [1 1 1 1 0 1 1 |o 1 1 1 1 1

Figure 38. Test Data for ALU.VHD with Sensors

Output #0 stuck low at 601
Input #0 stuck low at 601
Input #1 stuck low at 601

Figure 39. Faults Found in ALU.VHD With Probes

One characteristic of combinatorial digital logic is that most faults cannot be found using one
set of test data. For example, if an input was stuck low, and the actual signal value was low, the
circuit would operate correctly. The circuit’s sensors would show the correct result for this set of

commands. The fault will only become apparent when the signal value is high.

4.2 Improvements

4.2.1 Improving the Hypothesis Generator Calvin currently takes all components upstream
from the incorrect output and places them in the suspect queue. Calvin could use knowledge of
boolean algebra to better select candidate suspects. For example, consider one bit of the ALU
shown in Figure ref401. Assume that both data inputs are high, and the select line is high for an
OR operation. When simulating the circuit’s processes, Czlvin would place “reasons” for a signal’s
value in the activation record along with the signal’s new value. These could then be placed in the
Behave object. For OR gate 1605, the value on output signal 1530 would be 1 because of input
signal 1004’s 1 state. Now, suppose that the signal 1530 is found to be low instead of the simulated
high state. Since 1530 was caused by 1003, and OR gate 1605 was assumed to be working, Calvin

would not have to consider components upstream from the other input, 1003. (11:394-396)

4.2.2 Probing By bringing out internal signals to sensors, Calvin reduced the number of

suspect hypotheses dramatically. This is, in effect, inserting additional probes into the circuit.

67

Calvin contains component connection data within its Behave and Signal objects. Reasoning

with this information, an additional module can suggest possible signal lines to monitor.

An easy way would be to reason from the topology of the circuit. A simple way would be to
ask for the value of the signal immediately upstream from the incorrect output. If this matches the
simulated signal’s value, the component downstream must be the culprit. If not, continue upstream.

Calvin can support this technique, with its driver_bi field in the Signal object.

A more efficient technique, described by Davis and Hamscher, would be to perform what is
in effect a binary search. Examining the connection diagram of the circuit, Calvin could select a
signal that roughly divides the circuit into two section. If that signal’s actual value still does not
match the simulated value, all components downstream from that signal are exonerated. This can
continue, ideally splitting the suspect components into two groups each time, until a single suspect

is found. (11:410-411)

4.2.3 FEztending the VHDL language As with all models, VHDL has some limitations.
VHDL lacks a way to describe easily the physical layout of a system. Examining the VHDL
source for the ALU in Appendix B.2, one cannot determine if the OR gates are on a common IC.
This prevents easily determining faults such as solder bridges, or broken power pins. Although a

single fault, the effects might be seen in two entirely separate parts of the circuit.

One way of extending the language for diagnostic purposes would be adding commands for
explicitly stating what certain errors might do. The C'language handles implementation specific
features by the pragma keyword; in VHDL this might be handled with any new keywords embedded
within comment lines. These additions could link any processes that describe error conditions to
those that describe proper behavior. In Calvin, this would require additions only to the parser; the

errant processes would be linked to proper behaviors.

68

4.2.4 Interfacing with an Ezpert System Calvin, as it exists now, only has the rudiments of
Al behavior. A rule-based expert system could be interfaced with Calvin, turning it into a hybrid
model-based/rule-based system. Obvious places that would benefit would be the fault-hypothesis

and the suspect selection.

Knowledge that certain subcomponents have a high failure rate could be placed in the source.
A good place would be in library packages that are reused. With rules based on this information,
the suspect queue could be reordered to place these components nearer the front Although this
would not improve the current implementation, a real-time version might be able to come up with

a “best guess” if there is not enough time to complete the algorithm.

4.8 Summary

In this chapter I discussed three VHDL descriptions that Calvin used. Then I discussed ways
in which the current Calvin program can be extended and made more powerful. In the next chapter

I will summarize the thesis and discuss my recommendations for future work.

69

V. Observations and Recommendations

5.1 Reuview

In Chapter 1 is a review of the problem that this thesis attacks. Chapter 2 records a review of
some model-based ¢ 1, nostic technigues, including Scarl’s “Full consistency” and Dries’ “Diagnose”
algorithms. Chapter 3 contains a description of Calvin, including the internal structures and
algorithms. A description of the test programs is in Chapter 4, along with ideas on how Calvin can

be extended.

5.2 Accomplishments

In this thesis effort I designed Calvin, a model-based diagnostic system that used VHDL to
describe the model. Calvin is a starting point that can be u:sed for more powerful model-based

paradigms. Some of my accomplishments during this effort:

e VHDL can be use to describe the model for a model-based diagnostic technique. VHDL was

designed to be a description language, and future Air Force contracts mandate its use.

o The goal of creating Calvin was to develop a VHDL system that can be used for implementing

model-based diagnostic techniques. I did this by:

— Implementing a VHDL parser that generated a representation of a system from a VHDL
source file. This representation included all the necessary information for reasoning
about the structure of the components in the system, as well as the behavior of those

com}p . .us.

— Implementing a VHDL simulator that could take the representation from the parser and

a set of input values, and simulate the system generating output values.

— Creating routines that could modify the parsed representation so that errors in the

behavior of the original circuit can be simulated.

70

5.8

¢ | implemented a version of Scarl’s “full consistency” algorithm that was based on Dries’

“Diagnose” algorithm.

Recommendations

Based on my experiences, the following is a list of recommendations for future work:

Expand the implemented VHDL language. The implemented subset is limited to only logi-
cal operations. Expanding the VHDL constructs that Calvin can recognize will allow much
more complex systems. These include those whose behavior is described by loops or condi-
tional statements. Implementing the VADL TYPE command would allow multi-value logic
systems, such as an “OFF” state. Diagnosing analog systems would require floating point
arithmetic. Since the parser ignores unknown constructs, there should not have to be much

rewriting of existing code.

Implement the probing improvements that Chapter 4 describes. These should be the easiest
to add. I have already manually placed probes in the source code, so Calvin should not need

new data structures.

Improve the hypothesis generator. Here should be the easiest place to put “real AI” into
Calvin. Calvin already has the data structures for reasoning on the structure of the circuit.

The hardest problem may be reasoning from the VHDL processes.

Extend the diagnostic algorithm. The current algorithm only allows non-time-dependent
systems to be diagnosed. The VIIDL model contains time information, so there should be

o

a way to reason on systems that have “memory.,” such as sequential systems. One way may
be to maintain the lis of suspects, and use that information when new inputs enter the test

system. The new values should affirm certain hypotheses and reject others.

5.4 Summary

To perform model-based diagnostics, there must be some model to reason from. To keep
from having to build a new diagnostic system for each new product, a language can be used for the
model of the product. One approach may be to create a special-purpose language for describing
the model; however, there are already description languages in existence. One of these languages
is VHDL, a VHSIC hardware description language. Calvin uses VHDL as a model description

language.

In artificial intelligence applications, sometimes it seems as if very little of the project involves
any “artificial intelligence.” Instead, most of the effort is in creaiing a platform for the application.
This is also true for using VHDL for model-based diagnostics. Most of my time was spent getting
the simulator and parser portions of Calvin working. A lot of the rest was taken up interfacing

Dries’ Diagnose algorithm with the simulator and parser.

With Calvin, I have created an important framework that future researchers can easily extend.

Future work should be on extending Calvin’s diagnostic and simulation routines.

Appendix A. Supported VHDL Grammar

entity_declaration ::=
ENTITY identifier IS
entity _header
entity_declarative_part
END;

entity_header ::=
port_clause

port_clause ::=
port (formal_port.list);

formal port_list ::=
[format_port_element]

formal_port_element ::=
SIGNAL identifier_list : mode
| SIGNAL identifier_list : mode ; formal_port_element

mode ::=
IN
| OUT

architecture_body ::= '
ARCHITECTURE identifier OF name IS
architecture_declarative_part
BEGIN
architecture_statement_part
END;

architecture_declarative_part ::=
{block _declarative_item)

block_declarative_item ::=
signal_declaration
| component_declaration

architecture_statement_part ::=
[concurrent_statement]

configuration_declaration ::=
CONFIGURATION identifier OF name IS
block configuration
END:;

block_configuration ::=
FOR block_specification
use_clause
configuration_item
END FOR;

block specification ::=
identifier

use_clause ::=
USE identifier[,identifier];

configuration_item ::=
component_configuration

component_configuration ::=
FOR instantiation list : identifier
use_binding.indication
block_configuration
END FOR;

use_binding-ndication ::=
USE binding-indication;

binding. indication ::=
entity_aspect

entity_aspect ::=
ENTITY identifier (identifier)

signal_declaration ::=
SIGNAL identifier list : BIT

component_declaration ::=
COMPONENT identifier
port_local_port_list
END COMPONENT;

port_local_port_list ::=
(local_port_list);

local_port_list ::=
identifier.list : local_port_mode BIT
| identifier dist : local_port.mode BIT;
local_port_list

local_port_mode ::=
IN
| OUT

74

concurrent_statement ::=
process_statement

process_statement ::=
PROCESS
BEGIN
sequence_of_statements
END PROCESS;

sequence.of_statements ::=
{sequential _statement}

sequential statement ::=
signal_assignment_statement

signal_assignment_staterent ::=
target ;= waveform;

terget ::=
identifier

waveform ::=
expression AFTER expression

expression 1=
relation_and_relation
| relation_or_relation
| relation_nand_nor_relation
| relation xor_relation

relation_and_relation ::=
relation AND relation

relation_or_relation ::=
relation OR relation

relation_nand_nor_relation ::=
relation
| relation NAND relation
| relation NOR relation

relation _xor_relation ::=
relation XOR relation

relation ::=
simple.expression

75

simple_expression ::
primary

primary =
literal
| identifier

literal ::=
numeric_literal

numeric.literal ::=
decimal_int

decimal.nt ::=
[digit]

76

Appendix B. VHDL Source Code

B.1 Full-Adder

This section contains the VHDL source for a full-adder. This file was used by Calvin.

== One-bit full-adder
-- Consists of 2 half-adders and an OR gate

-~ X+Y+Cin =2 + Cout

~- This full-adder is used in the four-bit adder

-------- OR Gate -———————-
entity i015 is
port(
i011: in Bit;
1012: in bit;
1013: out bit
);

end;

architecture i025 of i015 is
begin
process
begin
i013 <= i011 or i012 after 5;
end process;
end i010;

------ Half adder -----——-
entity i010 is
port(
i011: in Bit;
i012: in bit,
1013: out bit;
i014: out bit
);

end;

architecture i020 of i010 is
begin
process
begin
i013 <= i011 xor i012 after 5;
i014 <= i011 and i012 after 5;
end process;

end 1010;

------ Full Adder ------—-
entity i050 is
port(
i051,1062,1053:1in bit;
i054,i065:0ut bit
);

end;
architecture i060 of i050 is

signal i090:bit;
signal i091:bit;
signal i092:bit;
component i010
port(
i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit
);
end component;
component i030
port(
i011,i012:in bit;
i013:0ut bit
);

end component;

begin
1080:1010
port map(
i011 => io51,
i012 => i052,
i013 => i090,
i014 => i091);

1081:i010
port map(
i011 => 1090,
1012 => 1053,
i013 => i054,
i014 => 1092);
1082:i030
port map(
i011 => 1091,
1012 => 1092,
i013 => i085);

end;

------- Circuit -=—==—=m=w—-
configuration i099 of i050 is
for i060
for i080,i1081:1010 use entity i010(i020);
end for;
for i082:1030 use entity i015(i025); -
end for;
end for;
end;

79

B.2 Two Operation ALU

This section contains the VHDL source for a two-operation AND/OR ALU The code to
simulate probes placed in the circuit are commented out in this code.

-- Three-bit, Two-operation ALU .
-— Performs AND or OR function of 2 three-bit values

22Z120
222120

-- If S=1, A2A1A0 AND B2B1BO
-- If 5=0, A2A1A0 OR .B2B1BO

-- This example has the probes inserted at the outputs
-— of the AND/OR functions commented out.

-------- OR Gate —————————
entity 1200 is
port(
i201: in Bit;
i202: in bit;
i203: out bit
);
end;
architecture i299 of i200 is
begin
process
begin
1203 <= 1201 or i202 after 5;
end process;
end;

-------- AND Gate ———-===--
entity i100 is
port(
1101: in Bit;
1102: in bit;
1103: ~ut bit
);
end;
architecture 1199 of 1100 is
begin
process
begin
1103 <= i101 and i102 after 5;
end process;
end;

-------- INVGate -~-------
entity i300 is
port(

i301: in Bit;

80

i302: out bit

);

end;

architecture i399 of i300 is

begin
process
begin
i302 <=

end process;

end;

entity i500 is
port(
ik10
i511
ib12
i520
is21
i522
i595
i530
i531
1532

-- The following are the

- i710
- 1711
- i712
- 1810
- ig11
- 1812

end;

. out
: out
. out
. out
: out
. out

bit;
bit;
bit;
bit;
bit;
bit

not 1301 after 5;
: in bit; -- A
: in bit; -- A
: in bit; -- A
: in bit; ——- B
: in bit; -- B
: in bit; —- B
: in bit; —- s0
: out bit; —- Z
: out bit; -- Z

: out bit - Z

commented-out probes

—- YOAND
-- Y1AND
—= Y1ANRD
== YOOR
-- Y10R
~= Y10R

architecture i599 of i500 is

component 1100

port(i1o01,
1102
i103

end component;

component 1200

port(i201,
1202
i203

end component;

component i300

In
out

In
out

Bit;
Bit);

Bit;
Bit);

81

o}

port(i301
i302
end component;

signal
i000,
i001,1003,1004,
i011,1013,i014,
i021,i023,i024
: bit;

In
Out

Bit;
Bit);

-- The commented-out probes have been replaced by
-- these internal signals

signal i710,i711,i712 :
signal i810,i811,i812 :

begin
—- Control line
i606: i300 port

-- Bit 0

i601: 1100 port
i602: i200 port
i603: i100 port
i604: 1100 port
i605: i200 port

-- Bit 1

i611: i100 port
i612: i200 port
1613: i100 port
i614: i100 port
i615: 1200 port

-~ Bit 2

1621: i100 port
1622: i200 port
1623: i100 port
1624: i100 port
i625: i200 port

end;

bit;
bit;

inverter

map(

map(
map(
map(
map(
map(

map(
map(
map(
map(
map(

map(
map(
map(
map(
map(

i301=>1595,

i101=>i510,
1201=>i510,
i101=>i710,
1101=>i810,
1201=>i003,

1101=>i511,
1201=>i511,
1101=>i711,
1101=>i811,
i201=>1013,

1101=>i512,
1201=>i512,
1101=>i712,
1101=>i812,
i201=>i023,

------- Circuit -—--—===--
of iB00 is

configuration i000
for i699
-— AND gates

1302=>1000);

i102=>1520, i103=>i710);
i202=>i520, i203=>i810);
i102=>1000, i1103=>i003);
i102=>i595, 1103=>i004);
i202=>i004, i203=>i530);

i102=>i521, i103=>i711);
i202=>i521, i203=>i811);
i102=>i000, i103=>i013);
i102=>i595, i103=>i014);
i202=>j014, i203=>i531);

i102=>i522, i103=>i712);
1202=>i522, i203=>i812);
i102=>i000, i103=>i023);
i102=>i595, i103=>i024 };
i202=>1024, i203=>i532);

for i601,i603,i604:1100 use entity i100(i199);

end for;

82

for i611,i613,i614:1100 use entity i100(i199);
end for;

for i1621,1623,i1624:1100 use entity i100(i199);
end for;

-- OR gates
for i602,i605:i200 use entity i200(i299);
end for;

for i612,i615:i200 use entity i200(i299);
end for;

for i622,i625:1200 use entity i200(i299);
end for;

-~ INV gates
for i606:1300 use entity i300(i399);
end for;

end for;

end;

83

B.3 Two Operation ALU with Probes

This section contains the VHDL source for a two-operation AND/OR ALU This code contains

the probes placed in the circuit.

-- Three-bit, Two-operation ALU
-- Performs AND or OR function of 2 three-bit values

-- If S=1, A2A1A0 AND B2B1BO
-- If S=0, A2A1A0 OR B2B1BO

222120
222170

L]

-— This example has the probes inserted at the outputs
-- of the AND/OR functions. The: 2 bring the results of
-- functions to sensors.

———————— OR Gate ——---—---
entity i200 is
port(
i201: in Bit;
i202: in bit;
1203: out bit
);
end;
architecture 1299 of i200 is
begin
process
begin
1203 <= 1201 or i202 after 5;
end process;
end;

———————— AND Gate -———-----
entity 1100 is
port(
1101: in Bit;
1102: in bit;
1103: out bit
);
end;
architecture i199 of i100 is
begin
process
begin
i103 <= i101 and i102 after 5;
end process;
end;
———————— INVGate —————-—-
entity i300 is
port(

84

both

i301: in Bit;
i302: out bit

);
end;
architecture 1399 of i300 is
begin
process
begin
i302 <= not i301 after §5;
end process;
end;
entity i500 is
port(
i510 : in bit; -- A
iS11 : in bit; -- A
i512 : in bit; -- A
i520 : in bit; -- B
1521 : imn bit; -- B
1622 : in bit; -- B
i695 : in bit; -- s0
ib30 : out bit; -- Z
ib31 : out bit; -- Z
ib32 : out bit; -- Z

~- These output signals are the probes

i710 : out
i711 : out
i712 : out
i810 : out
ig11 : out
i812 : out
);

end;

bit;
bit;
bit;
bit;
bit;
bit

architecture i599 of 1500

component il100

port(i101,
1102
i103

end component;

component i200

port(i201,
1202
1203

end component;

In
out

In
out

YOAND
Y1AND
Y1ARD
YOOR
Y10R
Y10R

is

Bit;
Bit);

Bit;
Bit);

85

component i300

port(i301 : In Bit;
i302 : Out Bit);

end component;

signal
1000,
1001,1003,1i004,
i011,1013,i014,
1021,i023,7i024
: bit;

begin
-- Control line inverter
i606: i300 port map(i301=>i595, i302=>i000);

-- Bit O

i601: i100 port map(i101=>i510, 1102=>i520, i103=>i710);
i602: i200 port map(i201=>i510, i202=>i520, i203=>i810);
i603: 1100 port map(i101=>i710, i102=>i000, i103=>i003);
i604: 1100 port map(i101=>i810, i102=>i595, i103=>i004);
i605: i200 port map(1201=>i003, i202=>i004, i203=>i530);

-- Bit 1

i611: i100 port map(1101=>i511, i102=>i521, i103=>i711 J;
i612: i200 port map(i201=>i511, i202=>i521, i203=>i811);
i613: 1100 port map(i101=>i711, i102=>i000, i103=>i013);
i614: i100 port map(i101=>i811, i102=>i595, i103=>i014);
i615: i200 port map(i201=>i013, i202=>i014, i203=>i531);

-~ Bit 2

i621: 1100 port map(1101=>i512, i102=>i522, i103=>i712);
i622: i200 port map(i201=>i512, i202=>i522, i203=>i812);
i623: i100 port map(i101=>i712, i102=>i000, i103=>i023);
i624: 1100 port map(i101=>i812, 1102=>i596, i103=>i024);
i625: i200 port map(i201=>i023, i1202=>i024, i203=>i532);

end;

------- Circuit ----------
configuration i000 of i500 is
for i599
<~ AND gates
for i601,i603,1604:1100 use entity i100(i199);
end for;

for i611,i613,i614:1100 use entity 1100(i199);
end for;

for i621,i623,i624:i100 use entity i100(i199);
end for;

86

-~ OR gates
for i602,i605:i200 use entity i1200(i299);
end for;

for i612,1615:1200 use entity i200(i299);
end for;

for i622,i625:1200 use entity i200(i299);
end for;

-- INV gates
for i606:i300 use entity i300(i399);
end for;

end for;
end;

87

B.4 Four-bil Adder

This section contains the VHDL source for a four-bit adder. This code was used by Calvin.

-- Four-bit Adder
-- Consists of 4 full-adders in cascade

-- X3X2X1X0 + Y3Y2Y1Y0 + Cin = Z3Z2Z1Z0 + Cout

-------- OR Gate - ———————-
entity i015 is
port(
i011: in Bit;
i012: in bit;
1013: out bit
);

end;

architecture i025 of i015 is
begin
process
begin ,
i013 <= i011 or i012 after 5;
end process;
end i010;

—————— Half adder ----—----
entity i010 is
port(
i011: in Bit;
1012: in bit;
i013: out bit;
i014: out bit
);

end;

architecture i020 of i010 is
begin
process
begin
1013 <= i011 xor i012 after 5;
1014 <= 1011 and i012 after 5;
end process;
end i020;

—————— Full Adder --------
entity i050 is
port(

1100 : in bit; -- Cin

88

i110, -
it11, -
i112, -
i113 : in bit; --
i120, --
1121, -
i122, -
i123 : in bit; --
i130, -
1131, -
i132, -
i133 : out bit; --
ii140, -
i141, -

i142 : out bit; --
1143 : out bit -
);
end;

X0

X1

X2

X3

YO

Y1

Y2

Y3

20

Z1

Z2

Z3
cout0
coutl
cout2
Cout

architecture i060 of i080 is

signal i1200,i201,1i202:bit;
signal i1210,1i211,i212:bit;
signal i220,1221,i222:bit;
signal i230,1231,1i232:bit;

component 1010
port(
i011: in Bit;
1012: in bit;
i013: out bit;
i014: out bit
); .
end component;
component i030
port(
1011,3012:in bit;
i013:out bit
)

end component;

begin
-~ Bit O
1500:1010
port map(
i011 => i110,
i012 => 1120,
1013 => i200,
io14

1

> i201);

89

i501:1i010
port map(
io11 =>
i012 =>
i013 =>
i0i4 =>

i502:i030
port map(
iot1 =>
io12 =>
i0o13 =>

Bit 1
i510:1010
port map(
io11 =>
1012 =>
i013 =>
io14 =>

i511:i010
port map(
io11 =>
i012 =>
i013 =>
io14 =>

i512:1030
port map(
i011 =>
1012
1013
Bit 2
i520:1010
port map(
1011 =>
i012 =>
1013 =>
i014 =>

>
>

i521:1010
port map(
i011 =>
1012 =>
1013 =>
io14 =>

ft

i522:1030
port map(
iot1 =>

i200,
i100,
i130,
i202);

i202,
1201,
i140);

1111,
i121,
i210,
i211);

1210,
1140,
i131,
i212);

i212,
i211,
i141);

1112,
i122,
i220,
i221);

i220,
i141,
1132,
i222);

1222,

90

i012 =

1013

-- Bit 3
i530:1010
port map(

io11
i012
io13
i0i14

i831:i010
port map(

i0o11
i012
i013
ioi4

1532:1030
port map(

i011
1012
i013

|
v Vv

=>
>
=>
>

=>
=>
>
>

=
=>
>

i221,
i142);

1113,
i123,
i230,
i231);

i230,
i142,
1133,
i232);

i232,
i231,
i143);

for
end
for
end

for
end
for
end

for
end
for
end

for
end
for
end

Circuit
configuration i099 of i050 is

for i060
i500,i601:i010 use entity i010(i020);

for;

i502:i030

for;

use entity i015(i025);

i510,i511:i010 use entity i010(i020);

for;

1512:1030

for;

use entity i015(i025);

i620,1521:i010 use entity i010(i020);

for;

i522:1030

for;

use entity i015(i025);

i530,i531:1010 use entity i010(i020);

for;

i532:1030

for;

end for;

end;

use entity i015(i025);

91

B.5 Fie-bit 2’s Compliment ALU

This section contains the VHDL source for a five-bit 2’s Compliment ALU. The ALU performs
addition and subtraction. This section is included as an additional example that can be used with
Calvin. '

~- This code describes a 5 bit 2’s bit ALU.
-~ Operations include add and subtract of two
-- 5-bit 2’s compliment numbers.

———————— OR Gate -—-~-=w==
entity i100 is
port(
1101: in Bit;
1102: in bit;
1103: out bit
);
end;
architecture i199 of i100 is
begin
process
begin
1103 <= 1101 or 1102 after 5;
end process;
end;

———————— AND Gate —----—-—-
entity i200 is
port(
i201: in Bit;
1202: in bit;
1203: out bit
);
end;
architecture i299 of i200 is
begin
process
begin
1203 <= i201 and 1202 after 5;
end process;
end;

———————— INVGate —------—--
entity i300 is
port(
i301: in Bit;
i302: out bit
);
end;
architecture i399 of i300 is
begin

92

process
begin

1302 <= not i301 after 5;
end process;

end;

-- FULL_ADDER

entity i400 is

port(
i401: in bit; -- x
i402: in bit; -y
i403: in bit; -- Cin
1404: out bit; -- Sum
i405: out bit -- Cout

);

end;

architecture i499 of i400 is

begin
process
begin

1404 <= 1401 xor i402 xor 1403 after §5;
1405 <= (1401 and i402) or
(1403 and i401) or
(i403 and i402) after 5;
end process;
end;

entity i500 is
port(
is10 : in bit; -- X
i511 : in bit;
1512 : in bit;
15613 : in bit;
i514 : in bit;
1520 : in bit; -- Y
15621 : in bit;
1522 : in bit;
i523 : in bit;
1624 : in bit;

i544 : in bit; -- add
i645 : in bit; -- sub
1530 : out bit; -- S

i531 : out bit;
1532 : out bit;
i533 : out bit;
i534 : out bit
)i
end;
architecture i599 of i500 is

93

component 1200

port(i201,
i202
i203

end component;

compenent 1100

port(i101,
1102
i103

end component;

component i300

port(i301
i302

end component;

component i400

port(’
i401:
i402:
1403:
1404:
1405:
);

end component;

in bit;
in bit;
in bit;
out bit;
out bit

In
out

In
out

In
Out

Bit;
Bit);

Bit;
Bit);

Bit;
Bit);

Cin
Sum
Cout

1998,
001,
jo11,
io21,
i031,
ioa1,

signal

begin
i701 :
-- Bit add/sub
~~ Bit
i710 :
i7T11 ¢
i712 :
i713 :
i714 :
1715 :

-- Bit
i720 :
i721 :
i722 :
1723 :

i100 port

i300 port
i200 port
1200 port
i200 port
1100 port
i400 port

i002,
i012,
1022,
i032,
i042,

i300 port map(
1200 port map(
1200 port map(
1200 port map(

map(
map (
map(
map(
map(
map (

i003,
1013,
i023,
1033,
1043,

1004,
io14,
1024,
i034,
1044,

map(i101=>i544,

i301=>i520,
i201=>i545,
i201=>ib44,
i201=>i510,
i101=>i003,
1401=>i004,
i404=>i530, i1405=>i900);

i301=>ib21,
1201=>1545,
1201=>ib44,
i201=>ib11,

1005,
i015,
i025,
i035,
1045,

94

1900,
1901,
1902,
1903,
io04

: Bit;

i102=>i5645, i1103=>i998);

i302=>i001);
i202=>i001,
i202=>1520,
i202=>1998,
1102=>i002,
i402=>i005,

1203=>i002);
1203=>1003);
1203=>1004);
1103=>i005);
1403=>i545,

i302=>i011);

i202=>i011, i203=>i012);
i202=>i521, i203=>i013);
i202=>i998, i203=>i014);

i724 :
i726 :

i400 port map(i401=>i014, i1402=>i015, i1403=>i900,
i404=>i5631, i405=>i901);

-~ Bit

i730

i731 :
i732
i733 :
i734 :
i7356 :

: 1300 port map(i301=>i522, i302=>i021);

i400 port map(i401=>i024, i402=>i025, i403=>i901,
i1404=>1532, i405=>1902);

-= Bit

i740

i741
i742 :
1743 :
i744
1745 :

: 1300 port map(i301=>i523, i302=>i031);

1400 port map(i401=>i034, i402=>i035, i403=>i902,
1404=>1533, 1405=>i903);

-~ Bit

i750

i751 :
i752 :
17863 :
i754 :
i766

--Done
end;

: 1300 port map(i301=>i524, i302=>i041);

i400 port map(i401=>i044, 1402=>i045, 1403=>1903,
i404=>i534, i405=>i1904);

Circuit --——-=-———-

configuration i000 of ib00 is
for i598

for
end
for
end
for

end
for
end
for
end

i701:i100 use entity 1100(i199);

for;

i710,i720,1730,1740,i750:i300 use entity i300(i399);
for;

i711,i712,i713,i721,

i722,i723,1i731,1732,

i733,1741,i742,1i743,

i761,i752,i753:1200 use entity i200(i299);

for;

i714,i724,i734,1744,i754:1100 use entity 1100(i199);
for;

i715,i726,i735,1745,i755:i400 use entity i400(i499);
for;

end for;

end;

95

i100 port map(i101=>i013, i102=>i012, i103=>i015);

1200 port map(i201=>i021, i202=>i545, i203=>i022);
1200 port map(i201=>i544, i202=>i522, i203=>i023);
1200 port map(i201=>i512, i202=>i998, i203=>i024);
1100 port map(i101=>i023, i102=>i022, i103=>i025);

i200 port map(i201=>i031, i202=>i545, 1203=>i032);
i200 port map(i201=>ib44, i202=>i523, i203=>i033);
i200 port map(i201=>i513, i202=>i998, i203=>i034);
1100 port map(i101=>i033, 1102=>i032, i1103=>i035);

i200 port map(i201=>i041, i202=>i545, 1203=>i042);
i200 port map(i201=>i544, i202=>i524, i203=>i043);
i200 port map(i201=>i514, i202=>i998, i203=>i044);
i100 port map(i1101=>i043, 1102=>i042, i1103=>i045);

Appendix C. FLEX modifications

Before the Borland C++ 3.1 compiler could compile the output of FLEX, some changes had
to be made to FLEX.SKL file. This file forms the skeleton of the FLEX output file. The following

changes were made:

1. Remove line 23 - “#include <osfcn.h>"
2. Remove line 33 - “#ifdef _STDC_”

3. Remove line 46 — “#endif _STDC_"

No changes were required for Bison.

96

Appendix D. Compiler-compiler Source Code

D.1 Overview

This module contains code for the compiler-compilers Bison and FLEX. The module UV
describes the grammar for VHDL. The individual VHDL tokens are parsed by FLEX according to
the module UV.LEX. These tokens are then parsed according to the VHDL grammar. As soon as
a construct has been recognized, the appropriate parser module is called to fill in the data. These

modules are described in Appendix E.

D2 UV
/*

FILE: UV

This is the parser file for Calvin.
The simulator objects are built up by calling extermal C/C++functions
defined in the Parser modules.

*/

P T L L L e L e Tt Lt
*x

** Portions of the following code was extracted from

L LALR(1) grammar for ANSI Ada (public domain)

** by Herman Fischer
*% adapted by: Gerry Fisher & Philippe Charles
-

*+ VHDL source for yacc

** gyntax analysis with error recovery
*x symbol table

** memory allocation

** no code generation

** ghift/reduce conflicts: 1

*k

*%

** Symbol conventions used:

% [too] is denoted _foo_

% {foo} is denoted __foo__

% {, foo } is denoted ___foo__
** foo_bar is a single nonterminal

97

*x FOO__bar is .a nonterminal where the keyword F0O0 is

% followed by a nonterminal bar

x%

T T T T T S
// History of original VHDL grammar

g T e LT £ T oy PP
x

* Date: 19 I'eb, 1990 S. Datta, Univ of Cincinnati

»

*This file currently contains 3 shift/reduce and 3 reduce/reduce conflicts:
*

*Shift/reduce conflicts:

*

* 1. name -> simple_name

*and .architecture_identifier. ~> LeftParen simple_name RightParen_ ERR
*cause 1 shift/reduce conflict.

*

* 2, attribute_name -> name Apostrophe attribute_designator .aggregate.
*causes 1 shift/reduce conflict (since .aggregate. -> | aggregate)

*

* 3. component_instantiation_statement -> a_label name

*_generic_map_aspect. .port_map_aspect. Semicolon_ERR

*causes 1 shift/reduce conflict (with .generic_map_aspect.).

*

*Reduce/reduce conflicts:

*

* 1. range -> attribute_name

*and name —> attribute_name causes 1 reduce/reduce conflict.

*

* 2. expanded_name -> simple_name

*and name —> simple_name causes 2 reduce/reduce conflicts.

*

*To avoid conflicts while implementing on an LALR{1) shift-reduce
*parser-generator such as YACC or BISON, the original IEEE-1076 VHDL grammar
*has been modified at appropriate places:

*

*The production for formal_port_element contains "type_mark .constraint."
*instead of ".name. type_mark .comstraint." (ie instead of subtype_indication)
*(AFIT file contains only "type_mark")

*®

*The production for formal_generic_element contains "type_mark .constraint."
*instead of ".name. type_mark .constraint." (ie instead of subtype_indication)
*(AFIT file contains only "type_mark")

*

*In the production for architecture_body, "simple_name" (AFIT) has been
*changed to "name" in accordance with the LRM

*

*The production for configuration_declaration contains "name" instead of
*"entity_name"” (LRM), or "Identifier" (AFIT)

*

*Missing Semicolon_ERR at end of production for block_configuration (in AFIT

98

*file) has been set right.

*

*In production for block_specification, "name" causes conflict and has not
*been implemented.

*

*In production for component_configuration, "Identifier" (AFIT) has been
*replaced by "name" in accordance with the LRM definition. Besides, missing
*Semicolon_ERR (in AFIT file) has been set right.

*

*In production for operator_symbol, sign” has not been implemented. Besides,
*"StringLit" (absent in AFIT file) has been added in accordance with the LRM
*definition. Also, "logical_operator' and "miscelaneous_operator”, and
*productions for them have been added (these were commented out in the AFIT
*file).

*

*In production for procedure_parameter_element, ".name. type_mark

* . constraint.” (or subtype_indication) has been replaced with "type_mark

*.constraint.”". AFIT file contains only "type_mark"”.

%*

*In production for function_parameter_element, ".name. type_mark

*_ constraint." (or subtype_indication) has been replaced with “type_mark
*.constraint.". AFIT file contains only '"type_mark".

*

*In production for scalar_type_definition, "range_type_definition" includes
*both integer and floating point types.

*

*In production for index_subtype_definition, "type_mark" (LRM) has been
*replaced by "name".

*®

*In production for discrete_range, "subtype_indication" (ie ".name.
*type_mark .comstraint." in LRM) has been replaced by "name range_constraint
*| type_mark". Note: "constraint" (LRM) implies "range_constraint" or
*"index_constraint”, but "index_constraint' has been ommitted in the
*production for discrete_range. This is the same as the AFIT file, except that
*"type_mark" has also been ommitted in AFIT file, since it causes 2
*reduce/reduce errors.

*

*Missing Semicolon_ERR in AFIT file for the production for
*incomplete_type_declaration has been set right here.

*

*This file as well as AFIT file contains "expanded_name" in production for
*"type_mark" to avoid conflict between '"type_mark" and "constraint".

*

*In production for constraint, '"index_constraint" has been replaced by
*"aggregate”, both in this as well as the AFIT file.

*

*Missing Semicolon_ERR in AFIT file for the production for file_declaration
*has been set right.

*

*In production for association_element, ".formal_part_Arrow. actual_part"
*has been replaced by "name Arrow OPEN_or_expression | OPEN_or_expression”.

99

*
*Prcductions for "formal_part" and "actual_part" have been replaced by their
*equivalents. (ie formal_part -> name | LeftParen name RightParen;
*actual_part -> OPEN_or_expression | LeftParen OPEN_or_expression RightParen;)
*

*In production for local_port_element, "subtype_indication .BUS.

* VarAsgn_expression.” has been replaced by "type_mark .comstraint.” in this
*file, and "type_mark" in the AFIT file.

*

*In production for local_generic_element, "subtype_indication

* VarAsgn_expression.” has been replaced by "type_mark .constraint.” in this
*file, and "type_mark" in the AFIT file.

*

*In production for configuration_specification, "Identifier" (AFIT) has been
*replaced by "name" in this file in accordance with the LRM definition.

*

*In production for entity_aspect, "ENTITY Identifier" (AFIT) has been
s*replaced by "ENTITY name" as per the LRM, but "CONFIGURATION name" (LRM)
*has been replaced by "CONFIGURATION Identifier", here, as well as in AFIT file.
*

*Missing Semicolon_ERR in production for disconnection_specification in AFIT
*file has been set right.

%

*In production for name, "indexed_name" includes "slice_name". Besides,

*name -> operator_symbol (operator overloading) has not been implemented.
*(causes 28 reduce/reduce conflicts).

* .
sprefix ~> function_call is not implemented. "function_call" is handled by
*"indexed_name".

*

*suffix -> operator_symbol is not implemented.

*

*indexed_name -> prefix (expression ,{ expression }) in LRM is implemented
*here as indexed_name -> name aggregate.

*

*In production for attribute_name, "prefix" (LRM) is replaced by "name",
*and optional ’(’ expression ’)’ in LRM is implemented as ".aggregate."
shere.

*

*"attribute_designator -> simple_name | RANGE" includes the keyword "RANGE"
*here. (used as an Identifier here).

*

*In production for primary, "function_call" is handled by "name", and ’(’
sexpression ’)’ is handled by aggregate. Besides primary -> type_conversion
*is not implemented.

*

*literal -> Identifier is not implemented. (causes 99 reduce/reduce conflicts).
*

*Production for element_association contains "simple_expression direction
*simple_expression | name range_constraint” to compensate for change in
*production for "choice”.

100

*

*choice -> discrete_range has been replaced by "choice -> simple_expression
*direction simple_expression | name range_constraint®, since 'discrete_range
*-> subtype_indication | range" causes conflicts. Besides '"choice ->
*simple_expression | simple_name" has been replaced by "choice ->
*simple_expression" since "simple_expression" contains "simple_name” in LRM
*definition.

*

*function_call is handled by "indexed_name"

*

*In production for qualified_expression, "type_mark" has been replaced by
*"name", and "aggregate" includes ’(’ expression ’)’.

*

*"type_conversion" has been replaced everywhere by its appropriate
*production.

*

*allocator -> NEW subtype_indication | NEW qualified_expression has been
*replaced by "NEW qualified_expression" only, since "subtype_indication"
*causes conflicts.

*

* AFTER__expression. -> | AFTER numeric_literal (AFIT) has been changed to
*" AFTER__expression. -> | AFTER expression" to reflect the LRM.

*

*In production for procedure_call_statement, "actual_parameter_part" has
*been ommitted. Its inclusion causes 1 shift/reduce, and 2 reduce/reduce
=conflicts. Here, procedure_call_statement has been implemented as 'name
*Semicolon_ERR", since "name" includes "name aggregate”.

*

*In production for component_instantiation_statement, "Identifier" (AFIT)
*has been replaced by "name" as per the LRM definition

*

#*generate_statement is always labelled (LRM). So unlabelled_generate_statement
*(AFIT) is not implemented.

*

*Missing Semicolon_ERR in production for library_clause in AFIT file has
*been set right.

*

*
L T L T e Lt Ly
/*

** $Header: vhdl.y,v 4.0 87/11/30 15:58:01 rbratton Exp $<y_op>$<y_op>$

%

*
*

$Log: vhdl.y,v $<y_op>$<y_op>$
Revision 4.0 87/11/30 15:58:01 rbratton
Check in of VHDL version 4.0 (version reported in thesis).

Revision 3.2 87/11/04 16:10:48 rbratton

Parser: corrected ranges and aggregate grammar. 1 shift/reduce
conflict.

Lex: Save before trying to implement alternate replacement
characters (! for |, : for #, and % for ").

L 2EE JEE K B 2R 2R B J

101

L R JEE NN K IR R JEE BEE JEE BEE BEE JNE JEE JEE N K R EE BE R R

L2 T BN B R I R TR BN B IR JEE JEE JNE JNE NN BE R K R K B B R R R R
X B OB K F ¥ % X H ® ® ¥ F K F B F H ¥ H * ¥ B »

Revision 3.1 87/11/01 11:28:31 rbratton
Checkpoint save before trying to resolve "range" problems.

Revision 3.0 87/10/15 06:23:49 rbratton
Beta 3 Save. Implemented case/selected signal assignment and
with/use (using improved symbol table).

Revision 2.3 87/10/11 15:06:54 rbratton

Because of problems with passing floating point parameters, floating
point has been removed--replaced with integer long. Hopefully, at a
later time, the problems will be resolved.

This is also a configuration save before adding WITH/USE capabilities
to the analyzer.

Revision 2.2 87/09/06 20:05:55 rbratton
Checkpoint save before implementing improved symbol table.

Revision 2.1 87/09/01 11:26:46 rbratton
Implemented floating point notation. Uses float (32 bits?) rather than
double, but could possibly be changed later.

Revision 2.0 87/08/29 09:43:08 rbratton
Configuration save. For VHDL Release 2.0

Revision 1.8 87/08/24 18:30:11 rbratton

1 shift/reduce conflict (default acceptable). Creates 487 cases.
Changed value of NULL_SYMBOL from (struct sym_entry *) 0 to

NULL (= 0). Still creates a NULL pointer, but does not generate
warnings while compiling the resulting code (vhdlyacc.c).

Revision 1.7 87/08/18 19:35:46 rbratton
Corrected problems with signal assignment statement. Added labels to
block statement and label symbol table entry.

Revision 1.6 87/08/09 19:34:47 rbratton

This version will NOT compile. It causes a "switch table overflow".
The next version may be a reduced grammar to try to avoid this
problem.

Revision 1.5 87/07/18 19:14:53 rbratton
checkpoint save: mno conflicts

Revision 1.4 87/07/17 18:21:23 rbratton
checkpoint save: 9 shift/reduce conflicts
Plus/Minus LeftParen

Revision 1.3 87/07/17 17:57:50 rbratton

checkpoint save: 13 shift/reduce conflicts
Plus/Minus; Identifier

102

** Revision 1.2 87/07/15 10:07:55 rbratton
** checkpoint save

**

** Revision 1.1 87/06/21 09:24:24 rbratton
** Added some error recovery. More to follow.
*% '

*x Revision 1.0 87/04/24 17:28:14 rbratton
=* Initial revision

%

**

*/
A

#include <malloc.h> /* !!11!! For BISON CODE !!!1t1x/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "comp.h"
#include "arch.h"
#include "misc.h"
#include "signal.h"
#include "process.h"
#include "ident.h"
#include "comp_in.h"
#include "portmap.h"
#include "“assoc.h"
#include "thesis.h"
#include "mcode.h"
#include "entity.h"
#include "port.h"
#include "generate.h"

#include "vhdl.hpp"
int G_translate = TRUE; // Translate signal IDs to offsets it TRUE

extern int ANY_NAME; /* generic hash table index for error recovery */
int op1l, op2, op3; /* temporary variables for op indices */

int is_childless; /* attribute of architecture body */
int is_structure; /* attribute of architecture body */

%}

“%union {

int y_tok; /* token %/

int y_op; /* Index to op table entry */
int y_hash; /* Index to hash table entry =/
int y_str; /* Index to string storage =*/

103

/*SYM_PTR y_sym;*/ /* Pointer to symbol table entry
long y_val; /* Floating point number (32 bits) =/

/* (also handles integer values) */

}

/* terminal symbols */

=/

/% old terminal symbols - keep until removed from yacc code */

/x/token &’ */
%token Apostrophe
/*%token *(’%/
/*/token RightParen#*/
%token DoubleStar
/*%token Star */
/*%token '+’ %/
/*%token ’,’ %/
/*%token ’~’ x/
%token VarAsgn
/*/token ’:’ %/
/*%token Semicolon */
%token LESym
%token Box

/*%token ’<’ =/
%token Arrow
/*%token =’ %/
%token GESym
/*/token ’>’ %/
%token Bar

%token KESym
/*%token ’.* %/
%token Slash
%token Identifier
%token Decimallnt
%token DecimalReal
%token BasedInt
%token BasedReal
%token CharacterLit
%token StringLit
%token BitStringLit
%token ABS

%token ACCESS
%token AFTER
%token ALIAS
%token ALL

%token AND

%token ARCHITECTURE
%token ARRAY
%token ASSERT
%token ATTRIBUTE

104

%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token

BEGIN_

BIT

BLOCK

BODY

BUFFER

BUS

CASE
COMPONENT
CONFIGURATION
CONSTANT
DISCONNECT
DOWKTO

ELSE

ELSIF

END_

ENTITY

EXIT

FILE_

FOR

FUNCTION
GENERATE
GENERIC
GUARDED

IF

INOUT

iN

Is

LABEL
LIBRARY
LINKAGE

LogpP
MAP
MOD
NARD
NEW
NEXT
NOR
NOT
NULL
OF
ON
OPEA

OR

OTHERS
ouT
PACKAGE
PORT
PROCEDURE

.PROCESS

RANGE
RECORD

105

%token REGISTER
%token REM
%token REPORT
%token RETURN
%token SELECT
%token SEVERITY
%token SIGNAL
%token SUBTYPE
%token THEN
%token TO
%token TRANSPORT
%token TYPE
%token UNITS
%token UNTIL
%token USE
%token VARIABLE
%token WAIT
%token WHEN
%token WHILE
%token WITH
%token XOR

JRFkk kR k kR Rk kkkkkk kR Rk kkkk kR kR kR kk Rk kdkok ki kkk kR kkkkk kg Rk kKK

ok
*k
X
e
*¥
* %k
*k
*%
**x
*%

operator precedences and associativities listed in
increasing precedence_

Note: ABS and NOT have the same precedence as DoubleStar;

yet, they associate to the right_ The (non)token UNARY_SIGN is used
only to establish precedence for unary plus/minus signs_ It does not
have to be a declared token or have any other value other than its
relative precedence value_

##*#tt*#**#**##*******#***#*#***************#*******##*t**##**#*t##*#*####/

%left AND OR NAND NOR XOR

%left ’=’ NESym ’<’ LESym ’>’ GESym
%left 142 22 g

%left ’*’ Slash MOD REM

%right UNARY_SIGN

%left DoubleStar

%right ABS NOT

A

#ifndef NDEBUG

#define TRACE(x,z) {if(yaccdebug)printf("#RULE %s ::= %s\n",x,2);}
#else

#define TRACE(x,z) ;

#endif

%}

106

/*

* Start symbol = "design_file"
*/

%start design_file

/*
* Rules
*/
W

/*
** Chapter 1: Design Entities
*/

/* 1.1 %/
entity_declaration
: ENTITY
{
}
Identifier
{
entity_add();
}
Is
-generic_clause_
{
port_clear();
3
-port_clause_
{
entity_add_port();
}

entity_declarative_part
-BEGIN__entity_statement_part_
END_ERR
-simple_name_
Semicolon_ERR

| ENTITY error

/% 1_1_1 %/
_port_clause_
: /*empty*/
| port_clause

-generic_clause_
: /*empty*/
| generic_clause

107

port_clause
: PORT
:(:
formal_port_list
RightParen_ERR
Semicolon_ERR

generic_clause

: GENERIC
;(;
formal_generic_list
RightParen_ERR
Semicolon_ERR

/¥ 1_1_1_2 »/

formal_port_list

: formal_port_element
—--Tormal_port_element__

| error RightParen_ERR

---formal_port_element__

: /vempty*/

| ___formal_port_element__
Semicolon_ERR
formal_port_element

{

yyerrok;

}

formal_port_element
: _SIGNAL_
{
ident_list_clear();
}
identifier_list
).
mode
/* _name_ causes conflict =/
type_mark
constraint
BUS_
{

port_add_id_list();
}

108

-VarAsgn__expression_

SIGNAL
: /*empty*/
| SIGNAL

’

mode
:/*empty*/
| IN
{
direct_set(V_IN);
}
| ouT
{
direct_set(V_0OUT);
}
| INOUT
| BUFFER
| LINKAGE

BUS
: /*empty*/
| BUS

r

_VarAsgn__expression_
: /*empty*/
| VarAsgn

expression

/* 1.1_1.1 »/

formal _generic_list

: formal_generic_element
---formal_generic_element__

| error RightParen_ERR

~-.formal_generic_element__

: /*empty*/

| ___formal_generic_element__
Semicolon_ERR
formal_generic_element
{

yyerrok;

109

formal _generic_element
: _CONSTANT_

identifier_list
¥

IN

/* _name_ causes conflict */

type_mark
-constraint_
_VarAsgn__expression_

-CONSTANT_

/*empty*/
CONSTANT

_IN.

/*empty*/
IN

/* 1_1._2 »/
entity_declarative_part
: __entity_declarative_item__

-.entity_declarative_item__

/*empty*/
—_entity_declarative_item__
entity_declarative_item

entity_declarative_item

alias_declaration
constant_declaration
type_declaration
subtype_declaration
attribute_declaration
attribute_sponification
subprogram_declaration
subprogram_body
signal_declaration
file_declaration
disconnection_specification
use_clause

110

/* 1_1_3 %/

_BEGIN__entity_statement_part_

: /% empty */

| BEGIN_
entity_statement_part

entity_statement_part
: ._entity_statement__

--entity_statement__

: /*empty*/

| __entity_statement__
entity_statement

entity_statement

: concurrent_assertion_statement

i concurrent_procedure_call

| process_statement /* NOT IN 7_2 %/

s

/* 1.2 %/
/* architecture bodies */

architecture_body
: ARCHITECTURE
{
}
Identifier
{
arch_add();
}
OF
name /* entity name */

arch_name();
IS
signal_clear_list();

comp_clear_list();
comp_inst_list_clear();

111

}

architecture_declarative_part

BEGIN.

architecture_statement_part

END_ERR

_simple_name_ /* architecture simple name */

Semicolon_ERR
| ARCHITECTURE error

]

/* 1_2_1 %/

/* Architecture Declarative Part */
architecture_declarative_part

: __block_declarative_item__

~.block_declarative_item__

: /*empty*/

| __block_declarative_item__
block_declarative_item

block_declarative_item
: constant_declaration
| signal_declaration

{

arch_add_signal_list();

}
type_declaration
subtype_declaration
attribute_declaration
component_declaration

{

arch_add_comp_list();
}
| alias_declaration
| attribute_specification
| contiguration_specification
| subprogram_declaration
| subprogram_body
| file_declaration
| disconnection_specification
| use_clause

/x 1_2_2 %/

/* Architecture Statement Part */
architecture_statement_part

¢ __concurrent_statement__

112

/¥ 1.3 %/
configuration_declaration
: CONFIGURATION

{
}
Identifier
{
generate_got_top_id(ident_get())
}
OF
name /* Identifier */ /+* entity_name */
{
generate_got_top_entity_id(ident_get())
}
IS

configuration_declarative_part
block_configuration
END_ERR
_Simple_name_
Semicolon_ERR
| CONFIGURATION error

configuration_declarative_part
: _.configuration_declarative_item__

—-configuration_declarative_item__

1 /xempty*/

| __configuration_declarative_item__
configuration_declarative_item

configuration_declarative_item
: use_clause
| attribute_specification

/% 1.3.1 %/
/* block configuration */
block_configuration

: FOR
block_specification
{
generate_got_top_arch_id(ident_get());
}

__use_clause__
--configuration_item__
END_ERR

FOR

113

Semicolon_ERR

__.use_clause__

: /*empty*/

| use_clause
__use_clause__

—.configuration_item__

1 /*empty*/

| __configuration_item__
configuration_item

s

block_specification

: label /* arch, block, generate */

_opt_index_spec_

/* | name causes conflict */

_opt_index_spe;_

: /*empty*/

1 ¢
index_specification
RightParen ERR

index_specification
: discrete_range
| expression

configuration_item
: block_configuration
| component_contiguration

/% 1_3_2 »/

component_configuration

: FOR
instantiation_list
L

name /* Identifier =/

_USE__binding_ indication_

_block_configuration_
END_ERR
FOR

114

{
generate_ident_list();
}
Semicolon_ERR

_USE__binding_indication_
1 /*empty*/

] USE

binding_indication
Semicolon_ERR

.
’

-block_configuration_
: /*empty*/
| block_configuration

/*

** Chapter 2: Subprograms
*/

/* 2_1 %/

subprogram_declaration
: subprogram_specification
Semicolon_ERR

subprogram_specification
: PROCEDURE
designator
_procedure_parameter_list_
| FUNCTION
designator
_function_parameter_list_
RETURKN
type_mark

designator
: Identifier
| operator_symbol

operator_symbol' /* defined in LRM 2_1 »/
: relational_operator

| adding_operator

/* | sign */

| multiplying_operator

| logical_operator

115

| miscellaneous_operator
| StringLit
’

logical_operator : AND | OR | NAND | NOR | XOR

miscellaneous_operator : DoubleStar | ABS | NOT

~procedure_parameter_list_

1 /*empty*/

I
procedure_parameter_element
——-procedure_parameter_element__
RightParen_ERR

P ¢
error
RightParen_ERR

—~--procedure_parameter_element__

: /*empty*/

| ___procedure_parameter_element__
Semicolon_ERR
procedure_parameter_element

{

yyerxok;

}

procedure_parameter_element

: _procedure_parameter_object_class_
identifier_list
):)
_procedure_parameter_mode_
/* _name_ causes conflict */
type_mark
-constraint
_VarAsgn__expression_

’

~procedure_parameter_object_class_
: [*empty*/
| VARIABLE
| CONSTART

-procedure_parameter_mode_
: /*empty*/
| I8

116

| aut
| INOUT

-function_parameter_list_

: /*empty*/

I &
function_parameter_element
—..function_parameter_element__
RightParen_ERR

b
error
RightParen_ERR

---function_parameter_element__

1 /*empty*/

| ___function_parameter_element__
Semicolon_ERR
function_parameter_element

.
'

function_parameter_element

: _function_parameter_object_class_
identifier_list
):I
-function_parameter_mode_
type_mark
-constraint _
_VarAsgn__expression_

-function_parameter_object_class_
: /xempty*/

| CONSTANT

| SIGNAL

-function_parameter_mode_
: /*empty*/
| 1IN

/% 2.2 %/

subprogram_declarative_part

: /*empty*/

| subprogram_declarative_part
subprogram_declarative_item

{
yyerrok;
}

subprogram declarative_item
constant_declaration
variable_declaration
alias_declaration
type_declaration
subtype_declaration
attribute_declaration
attribute_specification
subprogram_declaration
subprogram_body
file_declaration
use_clause

/* 2.2 x/
/* subprogram bodies */

subprogran body

: subprogram_specification
Is
subprogram_declarative_part
BEGIN_
sequence_of_statements
END_ERR
.designator_
Semicolon_ERR

designator
1 /*empty*/
| designator

/* Packages */

/* 2.5 %/

package declaration

: PACKAGE
Identifier
Is
package_declarative_part
END_ERR
.simple_name_

118

Semicolon_ERR
| PACKAGE
error

»

package_declarative_part
: .-package_declarative_item__

_-package_declarative_item__

: /*empty*/

| __package_declarative_item__
package_declarative_item

package_declarative_item
: type_declaration

| subtype_declaration

| attribute_declaration
| constant_declaration
| alias_declaration

| subprogram_declaration
| component_declaration
| attribute_specification

| signal_declaration

| file_declaration

| disconnection_specification
| use_clause

| error END_ERR
Semicolon_ERR

/% 2_6 %/
/* package bodies */

package_body

: PACKAGE
BODY
Identifier
Is

package_body_declarative_part

END_ERR
_simple_name_
Semicolon_ERR

| PACKAGE

BODY

error

package_body_declarative_part

: __package_body_declarative_item__

119

--package_body_declarative_item__

: /*empty*/

| __package_body_declarative_item__
package_body_declarative_item

package_body_declarative_item
: subprogram_declaration

| subprogram_body

| type_declaration

| subtype_declaration

| constant_declaration
| file_declaration
| alias_declaration
| use_clause

/*

** Chapter 3: Types
*/

/% 3_1 %/

scalar_type_definition

: enumeration_type_definition

| range_type_definition /* includes integer and floating point */
| physical_type_definition

range_constraint
: RANGE .
range

range
: attribute_name /# simple_expression simple_expression -> (attribute) name */
| simple_expression

direction

simple_expression

direction
: TO
| DOWNTO

/* 3_1.1_ »f
enumeration_type_definition

120

;(:

enumeration_literal
___enumeration_literal__
RightParen_ERR

___enumeration_literal__

: /vempty*/

| ___enumeration_literal__
2 ?
enumeration_literal

{

yyerrok;

}

enumeration_literal
: Identifier
| CharacterLit

/* 3_.1.2 &£ 3.1.4 %/
/* Integer and Floating Point types */

range_type_definition
: range_constraint

L4

/* 3_1_3 */

phys1cal type_definition
: range_constraint
URITS
base_unit_declaration
--secondary_unit_declaration__
END_ERR
URITS

__secondary_unit_declaration__

: /*empty*/

| __secondary_unit_declaration__
secondary_unit_declaration

{

yyerrok;

}

base_unit_declaration
: Identifier

121

Semicolon_ERR

secondary_unit_declaration
: Identifier
)=
physical_literal
Semicolon_ERR

.
14

physical_literal
: _abstract_literal_
name /* in LRM: UNIT_name */

_abstract_literal_
: /*empty*/
| abstract_literal

»

/% 3.2 %/
composite_type_definition
: array_type_definition

| record_type_detinition

/* 3.2_1 %/

array. type_definition

: unconstrained_array_definition
| constrained_array_definition

unconstrained_array_definition
¢ ARRAY
x()
index_subtype_definition
-—_index_subtype_definition_ _
RightParen_ERR
OF
subtype_indication

__-index_subtype_definition__
: /vempty*/
index_subtype_definition__

l -——

| I |
t]

index_subtype_definition

122

constrained_array_definition
: ARRAY

index_constraint

OF

subtype_indication

.
»

index_subtype_definition

: name /* type_mark - causes conflict */
RANGE
Box

index_constraint
.)(:
discrete_range
—.-discrete_range__
RightParen_ERR

---discrete_range__
: /+empty*/

| ___discrete_range__

3 2
’

discrete_range
{
yyerrok;

}

1]

discrete_range
: range /* includes attribute_name */
| name
range_constraint /* subtype_indication - causes conflict */
| type_mark /* type_mark causes 2 r/r conflicts - required for
louie’s code */

/% 3_2_2 %/
record_type_definition
: RECORD
element_declaration
..element_declaration__
END_ERR
RECORD
| RECORD
error
END_ERR
RECORD

123

_.element_declaration__

: /*empty*/

| __element_declaration__
element_declaration
{
yyerrok;

}

element_declaration
: identifiexr_list

2
.

element_subtype_definition
Semicolon_ERR

s

/*
%
*%
**
*%
**
*%
*%
*%
*%

*/

identifier_list is used consistantly in definitions of new Identifiers,
with one exception--IMPORT_DIRECTIVE_ The IMPORT_DIRECTIVE expects to
find all Identifiers declared at the local scope and it is an error it
they are not_ In all other cases, it is an error to have two Identifiers
with the same name at the same level_ (Overloading not implemented_)
Therefore, identifier_list checks to see if the previous token was
IMPORT_

returns pointer to symbol table which has a list of identifier
definitions connected by the "next" pointers_
identifier_list
: Identifier
{

ident_list_clear();
ident_list_add();
#ifdef _DB1_
puts("~~~ Enter_id_list()");
#endif

}

.. identifier__

identifier__
/*empty*/
H)
Identifier
{
ident_list_add();
#ifdef _DB1_
puts(”~ "~ Enter_id_list()");
#endif

124

identifier__

————

element_subtype_definition
: subtype_indication

/* 3_3 »/

/* Access Types */

access_type_definition

: ACCESS
subtype_indication

.
’

/* 3.3_1 %/
/* Incomplete Type Declarations */
incomplete_type_declaration
: TYPE
Identifier
Semicolon_ERR

/* 3_4 %/
/* File Types */
file_type_definition
: FILE_

OF

type_mark

/*

** Chapter 4: Declarations
*/

/* 4_1_1 %/

type_declaration

: full_type_declaration

| incomplete_type_declaration

.
’

full_type_declaration
: TYPE
Identifier
IS
type._definition
Semicolon_ERR

125

type_definition

: scalar_type_definition

| composite_type_definition
| access_type_definition

| tile_type_definition

| error Semicolon_ERR

/* 4_2 */
subtype_declaration
: SUBTYPE
Identifier
IS
subtype_indication
Semicolon_ERR

subtype_indication

: type_or_function_name
type_mark
-constraint_

| type_mark
-constraint_

constraint
: /*empty*/
| constraint

type_or_function_name
: expanded_name

expanded_name

: simple_name /+* Identifier =*/

/* | STANDARD

*/

| expanded_name /* was Identifier =*/
2

simple_name /* Identifier */

{
yyerrok;
}
JeVrEertern ey CHANGED !tteternnnrngned
‘type_mark
! : expanded_name / * move to production_c !!! * /

126

1
! / * type_mark and constraint
! will otherwise cause conflict * /
] .
type_mark
: BIT

{

type_set(V_BIT);
} /# Only allow BIT types at this time */

.
?

constraint
: range_constraint

| aggregate /* was: (discrete_range ___discrete_range__) */

/* index_constraint */

/* 4.3_1_1 */

constant_declaration

: CONSTANT
identifier_list
2.
subtype_indication
_VarAsgn__expression_
Semicolon_ERR

/% 4_3_1_2 */
signal_declaration
: SIGNAL
{
ident_list_clear();
}

identifier_list
I A

subtype_indication

_signal_kind_
{
signal_add_id_list();
}

_VarAsgn__expression_
Semicolon_ERR

-signal_kind_
: /*empty*/
| signal_kind

127

signal_kind
: REGISTER
| BUS

/* 4_3_1_3 »/

variable_declaration

: VARIABLE
identifier_list
e
subtype_indication
_VarAsgn__expression_
Semicolon_ERR

td

/* 4_3_2 »/
/* File Declarations */
file_declaration
: FILE_
Identifier
):)
subtype_indication
IS
mode
expression
Semicolon_ERR

/* 4_3_3 and 4_3_3_1 %/

/% Interface Declaration and lists are interspersed
vhere they are actually used port, generic and parameter */

/* 4_3_3_2 %/
/* Association lists */

association_list
: association_element
association_element__

___association_element__

: /*empty*/

|)’)
association_element
___association_element__
{

yyerrok;

}

128

/*

** (expression) is defined by aggregate as:
»+ (general_element_association) =>

** (OPEN_or_expression) =>

*+ (expression)

*/

association_element
: /* formal_part */ /* causes conflict %/

name
{
assoc_list_add_node();
assoc_left(ident_get());
}
Arrow
{
mcode_clear_list();
G_translate = FALSE; // Stop translating signals to offsets
}

/* actual_part */
OPEN_or_expression /* can be name also */
{
int signal_name;
mcode_c_pop_top();
signal_name = mcode_c_pop();
assoc_right(signal_name);
G_translate = TRUE; // Start translating signals to offsets
}
| /* actual_part */
OPEN_or_expression /* can be name also */
/* causes conflict
formal_part : name | name ’(’ name ')’
actual_part : OPEN_or_expression | name ’(’ OPEN_or_expression

n))

*/
OPEN_or_expression
: OPEN

| expression

/% 4_3_4 */
alias_declaration
ALIAS

Identifier
2.

subtype_indication
IS
name

129

Semicolon_ERR

/% 4_4 =/
attribute_declaration
: ATTRIBUTE
Identifier
):l
type_mark
Semicolon_ERR

/* 4.5 *x/
component_declaration
: COMPONENT
Identifier
{
comp_add_comp();
}
- _GENERIC__local_generic_list_
-PORT__local_port_list_
{
comp_add_port();
}
END_ERR
COMPONERT
Semicolon_ERR

_PORT__local port_list_
: /*empty*/
| PORT
{
port_clear();
}
!(,
local _port_list
RightParen_ ERR
Semicolon_ERR

local_port_list

: local_port_element
—-_local_port_element__

| error RightParen_ERR

—--local_port_element__

130

: /*empty*/

| ___local_port_element__
Semicolon_ERR
local_port_element

local_port_element
: _SIGNAL_
{
ident_list_clear();
}
identifier_list
2.2
_local_port_mode_
type_mark
{
port_add_id_list();
}
constraint

.
’

_local_port_mode_
: /xempty*/
I IN
{
direct_set(V_IN);
}
| ouT
{
direct_set (V_OUT);
}
| INOUT
| BUFFER
| LIRKAGE

-GENERIC__local_generic_list_
1 /eempty*/
| GENERIC
)(»
local_generic_list
RightParen_ERR
Semicolon_ERR

local_generic_list

: local_generic_element
---local_generic_element__

| error RightParen_ERR

»

131

---local_generic_element __

1 /*empty*/

| ___local_generic_element__
Semicolon_ERR
local_generic_element

local_generic_element
: _CONSTANT_
identifier_list
E A]
IR
type_mark
~constraint_

’

/*
** Chapter 6: Specifications
+/

/* 5.1 %/

attribute_specification

: ATTRIBUTE
attribute_designator
OF .
entity_specification
Is
expression
Semicolon_ERR

entity_specification
: entity_name_list
2.2

entity_class

entity_class

: ENTITY

| ARCHITECTURE
| PACKAGE

| FUNCTION
| PROCEDURE
| SUBTYPE

| CONSTANT
| VARIABLE
| SIGNAL

132

| LABEL

| TYPE

| CONFIGURATION
| COMPONENT

entity_name_list

: entity_designator
---entity_designator__

| OTHERS

| ALL

---entity_designator__
: /*empty*/
| ___entity_designator__

y)
’

entity_designator

entity_designator
: simple_name
| operator_symbol

/* 5.2 x/
configuration_specification
: FOR
instantiation_list
{
ident_c_list_print();
}
,:)
/* Identifier */
name
USE
binding_indication
Semicolon_ERR
| FOR
error
Semicolon_ERR

instantiation_list
: identifier_list
| OTHERS

| ALL

| error ’:°

{

yyerrok;

133

}

/* 6_2_1 %/

binding_indication

¢ entity_aspect
-generic_map_aspect_
-port_map_aspect_

/* 6_2_1_1 %/
entity_aspect
: ENTITY
/* Identifier */
/* name / * name causes 1 s/r conflict */

Identifier
{
generate_entity_name(ident_get());
}
_architecture_identifier_
{
generate_arch_name(ident_get());
}
| CONFIGURATION
Identifier
/* name causes conflict */
{
printf("i!1! NOT IMPLEMENTED !t!!!1! Yd\n", ident_get());
}
| OPEN

_architecture_identifier_
: /*empty*/
|)(;
simple_name
RightParen_ERR

/* entity_indication

: library_name entity library_name
| OPEN

i */

/* 5.2_1_2 =/
-_.element_association__

: /*empty*/
element_association__

H ’
’

134

element_association
{
yyerrok;

}

/% 5_3 %/
/* Disconnection_specification */
disconnection_specification
: DISCONNECT
guarded_signal_specification
AFTER
expression
Semicolon_ERR

guarded_signal_specification
: signal _list
2.2

type_mark

/% 6_2_3 %/
/* initialize_directive
: INITIALIZE
type_mark
TO
expression
__waveform_
Semicolon_ERR
io*/

/*
*% Chapter 6: Names
*/

/% 6_1 %/

/*

*% According to the VHDL Test suite, library names are not used

** in expressions_ Therefore, the choice "library_name" is removed_
** NEED TO CHECK THIS OUT!!! s/

name
simple_name /* move to production_c */
indexed_name /* includes "slice_name" #*/

selected_name

attribute_name /* not implemented: causes 2 reduce/reduce conflicts
operator_symbol overloading not implemented

causes reduce/reduce conflicts (28) =*/

135

prefix

: name /*function call handled by indexed_name*/
/* | function_call

*/

.
»

/* 6.2 %/
simple_name /* returns hash index */
: Identifier

.simple_name_
: /*empty*/
| simple_name

,

/* 6_3 %/
selected_name
: prefix

::)

suffix

.
»

suffix

: simple_name

| CharacterLit

/* | operator_symbol #*/ /# handled by characterLit #*/
| ALL

/* 6_4 %/
indexed_name /* also includes "slice_name" 6_5 %/
: name /* in LRM: prefix =/

aggregate /* in LRM: ’(’ expression { ’,’ expression } ')’ #/

/* 6.6 */

attribute_name

: name /* prefix causes 7 shift/reduce conflicts */
Apostrophe
attribute_designator
aggregate /+ in LRM: ’(’ static_expression ’)’ #/

aggregate
: /*empty*/
| aggregate

136

,

attribute_designator
: simple_name /* attribute simple_name */
| RANGE /* somebody goofed! Keyword used as an identifier */

VAL i 2T L)

%

** Chapter 7 Expressions
*x

wkkkkEkrk/

/* T_1 %/

expression

: relation__AND__relation__

| relation__OR__relation__

| relation_KAND_NOR__relation_
| relation__XOR__relation__

relation__AND__relation__
: relation
AND
relation
{
mcode_add (M_AND) ;
}
| relation__AND__relation__
AND
relation
{
mcode_add(M_AND);
}

relation__OR__relation__
: relation
OR
relation
{
mcode_add(M_OR);
}
| relation__OR__relation__
OR
relation
{
mcode_add(M_OR) ;
}

137

relation_NAND_NOR__relation_
: relation
| relation
NAND
relation
{
mcode_add (M_NAKD) ;
}
| relation
NOR
relation
{
mcode_add(M_NOR) ;
}

relation__XOR__relation__
: relation
XOR
relation
{
mcode_add(M_XOR) ;
}
| relation__XOR__relation__
XOR
relation
{
mcode_add(M_XOR) ;
}

relation
: simple_expression
_relop__simple_expression_

_relop__simple_expression_

: /*empty+/

| relational_operator
simple_expression

/*

** simple_expression ::= [sign] term { adding_operator term
*/

simple_expression

: _sign_term__add_op__term__

138

relation_NAND_NOR__relation_
: relation
| relation
NAND
relation
{
mcode_add(M_KARD) ;
}
| relation
NOR
relation
{
mcode_add(M_NOR) ;
}

relation__XOR__relation__
: relation
XOR
relation
{
mcode_add(M_XOR);
}
| relation__XOR__relation__
XOR
relation
{
mcode_add(M_XOR);
}

relation
: simple_expression
_relop__simple_expression_

_relop__simple_expression_

: /*empty*/

| relational_operator
simple_expression

/*

** gimple_expression ::= [sign] term { adding_operator term }

*/
simple_expression
: _sign_term__add_op__term__

138

term

: factor

| term
multiplying_operator
factor

{

" yyerrok;

}

-sign_term__add_op__term__

: term Yprec UNARY_SIGN

| sign
term Yprec UNARY_SIGN

| _sign_term__add_op__term__
adding_operator
term

factor
: primary
DoubleStar__primary_
| ABS
primary
| ¥OT
primary
{
// puts("~""! mcode_add(NOT)");
mcode_add (M_NOT) ;
}

_DoubleStar__primary_

: /*empty*/
| DoubleStar
primary
pPrimary
¢ literal
{
mcode_add(1lit_get());
}
| qualified_expression
/* | function_call
*/
| name /* name = simple_name =
{

Identifier

139

enumeration_literal =/

if(G_translate == TRUE) {
TP_arch arch_ptr = arch_get(arch_c_get_id());
TP_entity ent_ptr entity_get(arch_ptr->name);
TP_port port_ptr = ent_ptr->port_list;
TP_port the_port = port_get(ident_get(), port_ptr);

mcode_add(the_port->number); // Offset of the port

}

élse {
mcode_add(ident_get());

}

mcode_add(M_GET);
}
/* includes function_call */
| aggregate /+(expression) is included under aggregates/
/* | type_conversion causes reduce/reduce conflicts
*/ | allocator

/x T7.2_1 %/
/* logical operators embedded in expression */

/% 7.2_2 */
relational_ operator
r =2

| NESym
| 1¢?

| LESym
| 1y

| GESym

/% 7_2_3 %/
adding_operator
140
| 1.
I D&J

sign
r4)

I Yo

.
’

/* T_2_4 */
multiplying_operator
. rg?

| Slash

| MOD

{ REM

140

/* 7T_3_1 */
literal

: numeric_literal

| CharacterLit
/*

* | enumeration_literal

* Causes 99 reduce/reduce conflicts with Id and CharLit_
* Covered under ’name’_

/ / Identifier causes conflict */
| StringLit

| BitStringLit

| NULL_

numeric_literal
: abstract_literal
| abstract_literal /* physical_literal */
name /* Identifier */ /* in LRM: UNIT_name */

/* name in physical_literal causes conflict */

/* 7_3_2 */

aggregate

. r()
element_association
___element_association__
RightParen_ERR

element_association
: expression
| choice
__Bar__choice__
Arrow
expression
| simple_expression
direction /* because of production for "choice"
to avoid conflict */
simple_expression
| name
range_constraint

choices

: choice
__Bar__choice__

{

yyerrok;

141

__Bar__choice__

: /*empty*/

| __Bar__choice__
Bar
choice

choice
: simple_expression /* includes simple_name */
| simple_expression
direction
simple_expression /* because of production for "discrete_range"
to avoid conflict */
| name
range_constraint
| OTHERS

/* T_3_3 */

/* function_call

: Identifier
actual_parameter_part

;
actual_parameter_part

)()

association_list

RightParen_ERR
; function_call handled by selected name */
/* _actual_parameter_part_

| ¢
association_list
RightParen_ERR
; * function_call handled by selected name */

/% 7.3_4 »/
qualified_expression
: name
Apostrophe
aggregate
/*
*+ type_mark ’ aggregate | type_mark ’ (expression)
*/

142

/* 7.3.5 */
/* type_conversion causes reduce/reduce conflict
: Identifier type_mark

'(’ aggregate

expression

RightParen_ERR

*/

/* T7_3_6 =/

allocator

: NEW

/* subtype_indication

| WEW causes numerous reduce/reduce conflicts */
qualified_expression

/*

** Chapter 8: Sequential Statements
*/

/% 8_0 */

sequence_of_statements
: __sequential_statement__
| error END_ERR

{

yyerrok;

}

| error ELSIF

{

yyerrok;

}

| error ELSE

{

yyerrok;

}

| error WHEN

{

yyerrok;

}

.-sequential statement__
: /*empty*/

| sequential_statement
-_sequential _statement__

143

sequential_statement
: assertion_statement

| signal_assignment_statement

| variable_assignment_statement
| if_statement

| case_statement

| loop_statement

| next_statement

| exit_statement

| return_statement

| null_statement

| procedure_call_statement

| wait_statement

/* 8_1 =/

wait_statement

: WAIT
-sensitivity_clause_
-condition_clause_
_timeout_clause_
Semicolon_ERR

_sensitivity_clause_
: /*empty*/
| sensitivity_clause

_condition_clause_
: /*empty*/
| condition_clause

.
?

_timeout_clause_
/*empty*/
| timeout_clause

sensitivity_clause

: 0N
/* sensitivity_list */
signal_list

condition_clause
: UNTIL
expression

144

timeout_clause

: FOR

expression

/*

** returns SYM_REF op tree indexes

*/

signal_list

: name
=lame__

| OTHERS

| ALL

name

: /*empty*/

r 2
»

name

/* 8_2 %/

assertion_statement

: ASSERT

expression
_REPORT__expression_
_SEVERITY__expression_
Semicolon_ERR

-REPORT__expression_

1 /*empty*/
| REPORT

expression

_SEVERITY__expression_

: /*empty*/
| SEVERITY

expression

.
1

/% 8_3 »/

signal_assignment_statement

target
{

145

[}

TP_arch arch_ptr arch_get(arch_c_get_id());
TP_entity ent_ptr entity_get(arch_ptr->name);
TP_port port_ptr = ent_ptr->port_list;

TP_port the_port = port_get(ident_get(), port_ptr);

mcode_add(the_port->number); // Offset of the port
}
LESym
TRANSPORT
{
G_translate = TRUE; // Start translating signals to offsets
}
waveform
Semicolon_ERR
{
mcode_add (M_POST) ;
}

target
: name
| aggregate °

waveform
: waveform_element
vaveform_element__

__.waveform_element__
: /*empty*/
| »')

waveform_element
_._waveform_element__

/* 8_3_1 »/

wvaveform_element

: expression /# NULL can be arrived at through expression - literal */
_AFTER__expression_

_AFTER__expression_
: /*empty*/
| AFTER
expression /* numeric_literal */ /# in LRM: expression */

146

/* 8_4 =/
variable_assignment_statement
: target

VarAsgn

expression

Semicolon_ERR

/* 8.5 »/
procedure_call_statement
: name /* name includes "name (association_list)" s/
Semicolon_ERR /* need to include actual_parameter_part
- causes conflict */

/* 8.8 »/

if_statement

: IF
condition
THEN
sequence_of_statements
__ELSIF__THEN__seq_of_stmts__
_ELSE__seq_of_stmts_
END_ERR
IF
Semicolon_ERR

__ELSIF__THEN__seq_of_stmts__
: /*empty*/
| ELSIF
condition
THEN
sequence_of_statements
_.ELSIF__THEN__seq_of_stmts__
{

yyerrok;

}

_ELSE__seq_of_stmts_
: /rempty*/
| ELSE
sequence_of_statements
{
yyerrok;

}

/* 8_7 *»/

147

case_statement
: CASE
expression
IS
case_statement_alternative
__case_statement_alternative__
END_ERR
CASE
Semicolon_ERR

_.case_statement_alternative__

: /*empty*/

| __case_statement_alternative__
case_statement_alternative

{

yyerrok;

}

.
14

case_statement_alternative
: WHEN
choices
Arrow
sequence_of_statements

/* 8.8 */

/*

*% To avoid shift/reduce conflicts, define rules for labeled/unlabeled loop
*% statement

*/

loop_statement

: a_label

unlabeled_loop_statement

| unlabeled_loop_statement

unlabeled_loop_statement
: _iteration_scheme_
Loop
sequence_of_statements
END_ERR
Loop
label
Semicolon_ERR

_iteration_scheme_

148

: /*empty*/
| iteration_scheme

iteration_scheme

: WHILE
condition

| FOR
loop_parameter_specification

label
: /*empty*/
| label

t]

loop_parameter _specification
: Identifier

IN

discrete_range

?’

/% 8.9 %/

next_statement

: NEXT
label
_WHEN__condition_
Semicolon_ERR

_WHEN__condition_
: /*empty*/
| WHEN

condition

/% 8_10 »/

exit_statement

: EXIT
_label
_WHEN__condition_
Semicolon_ERR

/* 8_11 #/

return_statement

: RETURN
expression
Semicolon_ERR

149

-expression_
1 [*empty*/
| expression

/* 8_12 */

null_statement

: RULL_
Semicolon_ERR

/*
* chapter 9 - concurrent statements

*/

/* 9.0 %/
set_of_statements

: __concurrent_statement__
| error END_ERR

—_concurrent_statement__

: /xempty*/

| concurrent_statement
—_concurrent_statement__

concurrent_statement
: block_statement
| process_statement

{

#ifdef _DB1_

puts(”~~-! arch_add_process()");

#endit

arch_add_process(); /+# NOTE: Only one process is allowed!!! */
}

| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement

{
#ifdef _DB1_
puts(”~~"! arch_add_comp_inst_list()");
#endif
arch_add_comp_inst_list();
}

| generate_statement
| concurrent_procedure_call

150

/* 9_1 %/

block_statement /#%x*%* needs changing *+#x&s+/

: a_label
BLOCK
guard;expression
-generic_clause_map_aspect_
_poxrt_clause_map_aspect_
block_declarative_part
BEGIK_
set_of_statements
END_ERR
BLOCK
label
Semicolon_ERR

-guard_expression_
: /*empty*/
| guard_expression

guard_expression
)(:
expression
RightParen_ERR

»

-generic_clause_map_aspect_

1 /xempty*/

| generic_clause
_generic_map_aspect_Semicolon_

’

-generic_map_aspect_Semicolon_

| generic_map_aspect
Semicolon_ERR

_port_clause_map_aspect_

: /*emptys/

| port_clause
-port_map_aspect_Semicolon_

_port_map_aspect_Semicolon_

| port_map_aspect
Semicolon_ERR

151

block_declarative_part
: __block_declarative_item__

/* 9.2 +/

/%

«* To avoid shift/reduce conflicts, define rules for labeled/unlabeled process
** statements_

*/

process_statement

: a_label

unlabeled_process_statement

| unlabeled_process_statement

unlabeled_process_statement

: PROCESS
{
#itdef _DB1_
puts("~~"! process_clear()");
#endif

process_clear();
}
_sensitivity_list_
process_declarative_part
BEGIN_
{
process_clear();
mcode_clear_list();
}
sequence_of_statements
{
// Place END opcode in block
mcode_add (M_END) ;
process_add_mcode();
new_sim_block(arch_c_get_id());
add_code_to_sim_block(create_c_sim_process(),"CORRECT_CODE_TITLE");
create_all_hypo();
finish_sim_block();
}
END_ERR
PROCESS
_label _
Semicolon_ERR

_sensitivity_list_
: /+empty=*/

152

| sensitivity_list

sensitivity_list

B)(:
signal_list
RightParen_ ERR

process_declarative_part
¢ __process_declarative_item__

--process_declarative_item__

1 [*empty*/

| __process_declarative_item
process_declarative_item

{

yyerrok;

}

»

process_declarative_item
: constant_declaration

| variable_declaration

| type_declaration

| subtype_declaration

| attribute_declaration
| attribute_specification
| subprogram_declaration
| subprogram_body

| file_declaration

| alias_declaration

| use_clause

/* 9.3 */

/*

*x to avoid shift/reduce conflicts for concurrent_procedure_call
** define rules for labeled and unlabeled statements separately
=/

concurrent_procedure_call

: a_label
unlabeled_concurrent_procedure_call

| unlabeled_concurrent_procedure_call

?

unlabeled_concurrent_procedure_call
¢ procedure_call_statement

153

/% 9_4 x/

/*

** To avoid shift/reduce conflicts, define rules for labeled/unlabeled
** concurrent_assertion_statements_

*%

** This creates an equivalent process statement which has a sensitivity
** list of the longest static prefix of each signal name appearing in
** the boolean expression of the assertion statement_

*/

concurrent_assertion_statement

: a_label

unlabeled_concurrent_assertion_statement

| unlabeled_concurrent_assertion_statement

.
1l

unlabeled_concurrent_assertion_statement
: assertion_statement

L

/* 9.5 %/
/*
*+ To avoid shift/reduce conflicts, define rules for labeled/unlabeled
** concurrent_signal assignment_statements_
*%
** This creates an equivalent process statement_ See 8_2_4 of the LRM_
*/
concurrent_signal_assignment_statement
: a_label
unlabeled_conditional _signal_assignment
| unlabeled_conditional_signal_assignment
| a_label
unlabeled_selected_signal_assignment
| unlabeled_selected_signal_assignment

/* 9_5_1 %/
unlabeled_conditional_signal_assignment
: target

LESym

/* options */

GUARDED

TRANSPORT

/* conditional_waveforms */

__waveform__WHEN__condition__ELSE__

waveform

Semicolon_ERR

154

__waveform__WHEN__condition__ELSE__
: /*empty*/
| __waveform__WHEN__condition__ELSE__
waveform
WHEN
expression
ELSE

/* 9_5_2 »/
unlabeled_selected_signal_assignment
: WITH

expression

SELECT

target

LESym

/* options */

GUARDED

TRANSPORT

/* selected_waveforms */

wvaveform

WHEN

choices

Semicolon_ERR

___waveform__WHEN__choices__
: /*empty*/
waveform__WHEN__choices__

).)
wavefornm

WHEN
choices

GUARDED
1 /*empty*/
| GUARDED

TRANSPORT
: /*empty*/
| TRANSPORT

waveform__WHEN__choices__ /* changed from LRM for comsistancy */

155

/* 9.6 */
component_instantiation_statement
: a_label

/* Identifier */

name

{

comp_inst_list_add_node(ident_save_get());
comp_inst_entity(ident_get());
}

-generic_map_aspect_

portmap_list_clear();
}
-port_map_aspect_

comp_inst_portmap(portmap_get());
}

Semicolon_ERR

_port_map_aspect _
: /*empty*/
| port_map_aspect

port_map_aspect

PORT

MAP
{
assoc_list_clear();
}
' /* was: PORT aggregate */
association_list
{
portmap_list_add_node(assoc_list_get());
}

RightParen_ERR

-generic_map_aspect_
: /*empty*/
| generic_map_aspect

generic_map_aspect

GENERIC
MAP
:()

156

association_list
RightParen_ERR

/* 9.7 %/

/*

** .To avoid shift/reduce conflicts, define labeled/unlabeled generate
** gtatements_

»/

generate_statement

: a_label

unlabeled_generate_statement

/* | unlabeled_generate_statement

*/

unlabeled_generate_statement
: generation_scheme
GENERATE
set_of_statements
END_ERR
GENERATE
-label_
Semicolon_ERR

generation_scheme
: FOR
generate_parameter_specification
| IF
condition

generate_parameter_specification
: Identifier

IN

discrete_range

condition
. expression

/*
*x label declaration
*/
a_label
: label
):J

{

ident_save(); /* Save ident; case of 2 idents before parsed */

}

157

label
: Identifier

/*
** Chapter 10: Scope and Visibility
*/

/% 10_4 */

use_clause

: USE
selected_name /* package simple name */
—__Selected_name__
Semicolon_ERR

___selected_name__
: /*empty*/
selected_name__

y
»

selected_name

/*
** Design Units and Their Analysis
*/

/% 11_1 »/

design_file

: design_unit
__design_unit__

--design_unit__

1 /*empty*/

| design_unit
__design_unit__

design_unit

: context_clause
library_unit

library_unit

: primary_unit
| secondary_unit

158

| error

primary_unit

: entity_declaration

| configuration_declaration
| package_declaration

secondary_unit
: architecture_body
| package_body

.

t]

/* Design Libraries */
/* 11_2 */

library_clause

: LIBRARY
logical_name_list
Semicolon_ERR

logical _name_list
: Identifier
--.logical_name__

_—.logical_name__
: /*empty*/
logical_name__

H])
Identifier

/* 11_3 =/
context_clause
: __context_item__

__context_item__

: /*empty*/

| __context_item__
context_item

context_item
: library_clause
| use_clause

159

/* A_4& */

/* abstract_literal */

/*

** Normally, the grammar for abstract literal would be found here_ It
** has been moved to the end of this file_ There you will find an

** explanation_

*/

/#t###t#t***#t**#**t*tt*t**#**t*tt
*¥k

** Error recovery non-terminals
*¥k

e e T I e Ty

/*
* Make ’;’, ’)’, and ’end’ significant for error recovery_

*/

RightParen_ERR

:)):

{
yyerrok;

}

Semicolon_ERR

?.2
s

{

yyerrok;
}
END_ERR
: END_
{
yyerrok;
}
/*

*x In order to implement floating point notation, it was necessary to

** declare the types of the parameters for ’abstract_literal_real’ and

** ’abstract_literal_int’, as well as the return type for ’abstract_literal’_
*#+ But if you do this, then yacc demands that all following grammar rules

#* be similarily typed. Therefore, this special case was made the last

** rule in the grammar_ This will cause the compiler to complain about

#** "gtruct/union or struct/union pointer required", but the source code

**x produced by yacc is correct_

*/

abstract_literal

160

: DecimalInt {/*puts("--~! found decimal int");*/}

| DecimalReal {puts("---! found decimal real");}
| BasedInt {puts("---! found based int");}
| BasedReal {puts(’---! found based real®);}
Wh

int yyerror(char *s)

{

printf ("YYError: ¥%s\n", s);

}

161

D.3 UV.LEX

%<
/*

UV.LEX

This file contains the FLEX code for recognizing the VHDL tokens
*/

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <io.h>
#include "ident.h"
#include "thesis.h"

#include "uv_tab.h"
#include <alloc.h>

char #*strip_underscore();
extern char YACC_STR_LIT(];
extern FILE =*infile;

#undef YY_IRPUT
#define YY_INPUT(buf,result,max_size) \
{\
int ¢ = getc(infile); \
result = (c¢==EOF) ? YY_NULL : (buf[0]=c,1); \
}
%}

[aAl
[bB]
{cC]
[dD]
[eE]
[£F]
[gGl
(hH]
[i1]
[33]
(kK]
[iLl
[mM]
[nN]
[o0]
[pP]
[qQ]
(xR]
[sS]
[tT)

HWNMPOoO YO RuUuHIXCOTIEHNOO®D>»

162

[uyl
[vv]
(w¥]
[xx]
[yYl
[zz]

N <L <

digit [0-9][0-9_1+

intlit {digit}

integer {intlit}

string ["1(["\n\t"11(\"\"))=["]

comment --["\n}=*
ws [\t]+
nl \n
varasgn =
doublestar [*][#]
lesym [<1[=]
gesym >=
nesym \\=
arrow =>

%

{ws} ;

{comment} {if(is_flag_ set(PRINT_COMM)) puts(yytext);} ;
)\)) {
puts ("SOMETHING IS RONG");
return Apostrophe;
}
{doublestar} {
return DoubleStar;

}

© {varasgn} {
return VarAsgn,;

}

{lesym} {
return LESym;

}

{BXIHT} {
return BIT;

}

{B}O}x} {
return Box;

}

{arrow} {
return Arxrow;

}

{gesym} {
return GESym;

}

163

{B}{A}{R} {
return Bar;
}
{nesym} {
return NESym;
}
{s}L}{a}{sHu} {
return Slash;
}
{I}digit}{digit}{digit} {
/*printf("Lexxed i%sl\n", yytext);*/
ident_set(yytext);
return Identifier;
}
{intlit} {
lit_set(yytext);
return Decimallnt;
}
{R}HE}AML} {
return DecimalReal;
}
{B}{A}{SHEIDHMHIIN}I{T} {
return BasedInt;
}
{B}{A}{SIHEMDIMRMEI{AIL} {
return BasedReal;
}
{CHEMAMHRMHAHCHTHEMRMHLIHIHTY {
return Characterlit;
}
{SHTHRIMIIHNIGHLI{IIT} {
return Stringlit;
}
BIHIMTHSHTHRMHIMNIGHLHIITY {
return BitStringLit;
}
{a}{B}{s} {
return ABS;
}
{AMC}H{CHEISHs} {
return ACCESS;
}
{AMFHTHEMR} {
return AFTER;
}
{AMHLMHIMAMS) {
return ALIAS;
}
{AMLMLY {
return ALL;

}

164

{A}{N3{p} {
return AND;
}
{AMRMCHEIMHII{THEHCHTHUIRMHE} {
return ARCHITECTURE;
}
{A}{RMR}AI{Y} {
return ARRAY;
}
{AMHSHSHEMHRMT} {
return ASSERT;
}
{AHTHTHRMHIIBIHUMTHE} {
return ATTRIBUTE;
}
{BMHEMGHII{N} {
return BEGIN_;
}
{BHLI{0o}CHK} {
return BLOCK;
}
{B}{oHD}{Y} {
return BODY;
3 ,
{BY{UHFI{FIEIR} {
return BUFFER;
(BHUMS) {
return BUS;
}
{CHAX{sH{E} {
return CASE;
}
{C3{0}{MI{P}I{OI{N}I{EINI{T} {
return COMPONENT;
}
{CHOMNI{FIHIMGHUIRIAI{TIH{I}I{O}N} {
return CONFIGURATION;
}
{CHOI{NF{SHTIAI{N}IT} {
return CONSTANT;
}
{DHIHSICIHOIEI{NI{EHCHT} {
return DISCONKECT;
}
{D}OIWH{NI{T}{O} {
return DOWNTO;
}
{EXLMSHE} {
return ELSE;
}

165

{EXLY{SHI}F} {
return ELSIF;

}

{EX{¥}{D} {
return END_;

}

{EMHNHTHIIMTHY} {
return ENTITY;

}

{EFXHIMT} {
return EXIT;

}

{FX{IHLME} {
return FILE_;

}

{F}{0}{R} {
return FOR;

}

{FHUIHNIHCHTIIIHOI{N} {
return FUNCTION;

}

{GHEMNMHEIRMHAMTHEY {
return GENERATE;

}

{GHEMNI{EMHRIMIIC {
return GENERIC;

}

{6}{u3{a}{R}{D}{E}{D} {
return GUARDED;

}

{1}F} {
return IF;

}

{IHN}H{oI{UuM{T} {
return INOUT;

}

{13{N} {
rcturn IN;

}

{13{s} {
return IS;

}

{LY{A}BEML} {
return LABEL;

}

{LI{I}{BI{R}I{AI{R}{Y} {
return LIBRARY;

}

{LIIH{NI{KI{AI{GHE} {
return LINKAGE;

}

166

{L}{o}{0}{P} {
return LOOP;

}

{M3{ax{P} {
return MAP;

}

{M}{0}{D} {
return MOD;

}

{NF{A{F}{D} {
return NAND;

}

{N}EMW} {
return NEW;

}

{NHEMHXHT} {
return NEXT;

}

{N}OMR} {
return NOR;

}

{¥}{OoMT} {
return NOT;

}

{NHUMLHLY {
return NULL_;

}

{0}{F} {
return OF;

}

{o}{N} {
return ON;

}

{0}{PHE}N} {
return OPEN;

}

{0}{R} {
return OR;

}

{0H{T}{HHEMR}{S} {
return OTHERS;

}

{03{u3{1} {
return OUT;

}

{PI{AMCHKIAMGHE} {
return PACKAGE;

}

{PY{O}{RMT} {
return PORT;

}

167

{P}{R}{O}{CHEIDI{UI{R}IE} {
return PROCEDURE;

}

{P}{R} O} CHE}I{S}Hs} {
return PROCESS;

}

{RIHAMN}I{GHE} {
return RANGE;

}

{R}{E}{C}{O}HR}{D} {
return RECORD;

}

{RHEMGHIMSHTIEIR} {
return REGISTER;

}

{RHE}{M} {
return REN;

}

{RMHEMPHOMRMT} {
return REPORT;

}

{RIEITHUIRIN} {
return RETURN;

}

{SHEMLHEMHCHT} {
return SELECT;

}

{SHEMHVHEMRIMIITIY} {
return SEVERITY;

}

{SHIMGHNI{AI{L} {
return SIGNAL;

}

{SIUMHBHTHYIHPHE} {
return SUBTYPE;

}

{THHEHEHN} {
return THEN;

}

{1}{0} {
return TO;

}

{THRI{AMHN}{S}{P}{O}{R}{T} {
return TRANSPORT;

}

{THYIPHE} {
return TYPE;

}

{UMNHIHTHS) {
return UNITS;

}

168

{UHEI{THIILY {
return UNTIL;
}
{UI{s}{E} {
return USE;
}
{VIAMRMIF{a}{BMHLIE} {
return VARIABLE;
}
{WHAMIMTY {
return WAIT;
}
{WHHM{E}{N} {
return WHEN;
}
{wHHEI{I}{L}{E} {
return WHILE;
}
{WHIX{TH{B} {
return WVITH;
}
{x}{0}{R} {
return XOR;
}
{UI{R}{AIRI{YI{SI{II{G}{R} {
return UNARY_SIGN;
}
{n1} {
/* extern int lineno; */
/* lineno++;%/
/*puts("End of Line.");*/
}

return yytext[0];

Wh

169

Appendix E. Parser Source Code

E.1 Overview

These modules are tightly linked to the UV module described in Appendix A.1. As soon as
a VHDL construct has been parsed, the associated code in the UV module calls the routines in
one of the following modules. VHDL constructs that consist of other VHDL objects reference the

routines of the sub-object’s module.

All routines for the parsed object are in a separate module. In general, each module has an
init function, functions to set the values of the object, and a function to return the object. In

addition, there are also functions ta print the object’s value to the screen.

E.2 ARCHH

/%
VHDL PARSER

File: ARCH.H
Date: 7 July 1992

This module handles the creation of an ARCHITECTURE by the
VHDL parser. These routines are called by the BISON program.

Routines:
arch_clear() -- Clear current arch settings
arch_id() —-- Add current identitier to arch
arch_name() -- Add current ident as arch name
arch_add_signal _list() -- Add current signal list to current arch
arch_print(ent) -- Print specified architecture
*/
/* - */

#ifndef __arch_h__
#define __axrch_h__ 1

#ifndef __ident_h__
#include "ident.h"
#endif

#ifndef __signal_h__

170

#include "signal.h"
#endif

#ifndef __comp_h__
#include '"comp.h"
#endif

#ifndef __comp_in_h__
#include "comp_in.h"
#endif

#ifndef __process_h__
#include "process.h”
#endif

*/

/*

typedef struct S_arch {
T_ident id;
T_ident name;
TP_signal signal_list;
TP_comp comp_list;
TP_comp_inst comp_inst_list;
T_process procossﬁ

struct S_arch #*next;

} T_arch;

/* arch node pointer */
typedef T_arch * TP_arch;

/* Instance of Arch */

/* entity for arch */

/* List of local signals */

/* List of local comp declarations #*/

/* List of comp instantiations */

/* the ONE process in the architecture */

/*-

/* prototypes */

void arch_clear(void);
void arch_add(void);
void arch_name(void);

void arch_add_signal_list(void);
void arch_add_comp_list(void);

void arch_add_comp_inst_list(void);
void arch_add_process(void);

void arch_c_list_print(void);

void arch_list_print(TP_arch list);
void arch_print(TP_arch list);

int arch_c_get_id(void);

TP_arch arch_get(int id);

AL
#endif

*/

E.8 ARCH.CPP

/*
VHDL PARSER

File: ARCH.C
Date: 7 July 1992

This module handles the creation of an ARCHITECTURE by the
VHDL parser. These routines are called by the BISON program.

*/

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <malloc.h>

#include <string.h>

~#include "thesis.h"

#include "“arch.h”

/* */

/* Current arch being created */

static TP_arch current_arch_list;

/* */
void arch_clear(void)
{
current_arch_list = NULL;
}
void arch_add(void)
{
TP_arch new_node;
if((new_node = (TP_arch)(malloc(sizeof(T_arch)))) == NULL) {
yyerror("Out of memory in ARCH_ADD()");
exit(129);
}
new_node->id = ident_get();
new_node->signal_list = NULL;
new_node->comp_list = NULL;
new_node->comp_inst_list = NULL;
nev node->process = RULL_PROCESS;
new_node->next = current_arch_list;
current_arch_list = new_node;
}

// Add name to architecture
void arch_name(void)
{

current_arch_list->name = ident_get();

}

void arch_add_signal_list(void)

{
current_arch_list->signal_list = signal _get();
}
void arch_add_comp_list(void)
{
current_arch_list->comp_list = comp_get();
} ,
void arch_add_comp_inst_list(void)
{
current_arch_list->comp_inst_list = comp_inst_list_get();
}
void arch_add_process(void)
{
current_arch_list->process = process_get();
}
int arch_c_get_id(void)
{
return current_arch_list->id;
}
void arch_c_list_print{(void)
{
arch_print(current_arch_list);
}
void arch_list_print(TP_arch list)
{
if(list == NULL) {
puts("Empty arch signal list");
} .
else {
while(list != NULL) {
arch_print(list);
list = list->next;
}
}
}

void arch_print(TP_arch node)
{
if(node == NULL) {
puts("Empty arch signal node");
}
else {

173

¥

//
//

TP_

{

/*

printf(“Arch id: *);

ident_print(&(node->id));

printf(" Name: ");

ident_print(&(node->name));

p\ltS("");

puts("Arch signal list");

signal_print(node->signal_list);
puts(“Arch comp list");

comp_print(node->comp_list);

puts("Arch component instantiation list");
comp_inst_list_print(node->comp_inst_list);
puts("Arch process");

process_print(&(node->process));

Return pointer to arch specified by ID
Return NULL if not found
arch arch_get(int id)

TP_arch ptr = current_arch_list;

while(ptr != NULL && ptr->id != id) {
ptr = ptr->next;

}

assert(ptr != NULL);

return ptr;

174

*/

E.4 ASSOCH

/*
VHDL PARSER

File: ASSOC.RH
Date: 9 July 1992
This module handles the creation of a assoc’s list of

input/output signals. Theses functions are called by the BISON
program.

Routines:
assoc_clear() ~- Clear current assoc list
assoc_add_id() ~- Add current ident to current assoc list !!! NOT USED
assoc_add_id_list() ~- Add current ident_list to current assoc list
assoc_print(list) -- Print supplied assoc list. If CURRENT_LIST,
print out the current list.
assoc_get() -- Get pointer to current list.
*/
/* - */

#tifndef __assoc_h__
#define __assoc_h__ 1

#ifndef __ident_h__
#include "ident.h"
#endif

/* assoc signal node */
typedef struct S_assoc {

T_ident left;

T_ident right;

struct S_assoc *next;
} T_assoc;

/* assoc signal node pointer */
typedef T_assoc * TP_assoc;

/* - - — +/

/* prototypes */

void assoc_list_clear(void);

void assoc_list_free(TP_assoc list);
void assoc_list_add_node(void);

void assoc_left(T_ident left);

void assoc_right(T_ident right);

void assoc_list_print(TP_assoc list);
TP_assoc assoc_list_get(void);

/* - S ——-s/

175

#tendif

176

E.5 ASSOC.CPP

/*
VHDL PARSER

File: ASSOC.C
Date: 9 July 1992

This module handles the creation of a assoc’s list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include "thesis.h"

#include "assoc.h"

#include "misc.h"

/* -- x/

/* Storage for current assoc signal list */

static TP_assoc assoc_signal_list = NULL;

/% */
void asscc_list_clear(void)
{
assoc_signal_list = NULL;
}
void assoc_list_free(TP_assoc list)
{
TP_assoc ptr;
if(list == CURRENT_LIST) {
list = assoc_signal_list;
}
while(list !'= NULL) {
ptr = list->next;
free(list);
list = ptr;
}
}

void assoc_list_add_node(void)
{

TP_assoc new_node;

if((new_node = (TP_assoc)(malloc(sizeof(T_assoc)))) == NULL) {
yyerror("Out of memory in assoc_ADD_ID()");

177

exit(101);

}
new_node->left = -1;
new_node->right = -1;
new_node->next = assoc_signal_list;
assoc_signal_list = new_node;
}
void assoc_left(T_ident left)
{
assoc_signal_list->left = left;
}
void assoc_right(T_ident right)
{
assoc_signal_list->right = right;
}

void assoc_list_print(TP_assoc list)

{
if(list == NULL) {
puts("Empty association list");
}
else {
if(list == CURRENT_LIST) {
puts("Found CL; printing current list:");
list = assoc_signal_list;
}
while(list !'= NULL) {
printf("%d => %d\n",
list->left,list->right);
list = list->next;
}
}
}
TP_assoc assoc_list_get(void)
{
return assoc_signal_list;
}
[

178

*/

E6 COMP.H

/*
VHDL PARSER

File: COMP.H
Date: 9 July 1992
This module handles the identifiers encountered by BISON.

Routines:

comp_clear() Clear current comp

comp_add_id() - Add ident to comp !!!not used
comp_add_id_list() - Add current ident list to current comp
comp_print () - Print comp data
comp_get () - Get current comp data
*/
/- */
#ifndef __comp_h__
#define __comp_h__ 1
#ifndef __ident_h__
#include "ident.h"
#endif
#ifndef __port_h__
#include "port.h"
#endif
/* comp signal node */
typedef struct S_comp {
T_ident id;
TP_port port;
struct S_comp *next;”
} T_comp;
/* comp signal node pointer */
typedef T_comp * TP_comp;
[——————————————— - - =/
/* prototypes */
void comp_clear_list(void);
void comp_add_comp(void);
void comp_add_port(void);
void comp_print(TP_comp list);
TP_comp comp_get(void);
TP_comp comp_get(int name, TP_comp ptr);
- - */

179

#endif

180

E.7 COMP.CPP

/*
VHDL PARSER

File: COMP.C
Date: 2 July 1992

This module handles the creation of a comp’s list of
input/output signals. Theses functions are called by the BISON

program.
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "thesis.h"
#include "comp.h”
#include "misc.h"

/*

/* Storage for current comp signal list %/
static TP_comp comp_list = RULL;

/* Storage for current comp */
static T_comp current_comp;

/*
void comp_clear_list(void)
{
comp_list = NULL;
}
void comp_add_comp(void)
{
TP_comp new_node;
if((new_node = (TP_comp)(malloc(sizeof(T_comp)))) == NULL) {
yyerror("Out of memory in comp_ADD_ID()}");
exit(102);
}
nevw_node->id = ident_get();
new_node->next = comp_list;
comp_list = new_node;
}
void comp_add_port(void)
{
comp_list->port = port_get();
}

181

*/

-%/

void comp_print{TP_comp list)

{
if(list == NULL) {
puts("Empty comp signal list");
}
else {
if(list == CURRENT_LIST) {
puts("Found CL; printing current list:");
list = comp_list;
}
while(list != NULL) {
printf("Name: ");
ident_print(&(list->id));
puts("") ;
printf("Port list:\n");
port_print((list->port));
list = list->next;
}
}
}
TP_comp comp_get(void)
{
return comp_list;
}

// Return pointer to entity specified by ID
// Return NULL if not found
TP_comp comp_get(int id, TP_comp ptr)

{
while(ptr != NULL && ptr->id != id) {
ptr = ptr->next;
}
return ptr;
}
/* - */

182

F8 COMP.IN.H

/*
VHDL PARSER

File: COMP_IN.H
Date: 9 July 1992
This module handles the creation of a comp_inst’s list of

input/output signals. Theses functions are called by the BISON
program.

Routines:
comp_inst_clear() -- Clear current comp_inst list
comp_inst_add_id() -- Add current ident to current comp_inst list
comp_inst_add_id_list() -- Add current ident_list to current comp_inst list
comp_inst_print(list) -~ Print supplied comp_inst list. If CURRENT_LIST,
print out the current list.

comp_inst_get() -~ Get pointer to current list.

*/ .

/* */

#ifndef __comp_in_h__
#define __comp_in_h__ 1

#ifndef __ident_h__

#include '"ident.h"
#endif

#ifndef __portmap_h__
#include "portmap.h"
#endif

/* comp_inst signal node */
typedef struct S_comp_inst {

T_ident name;
T_ident entity;
TP_portmap portmap;

struct S_comp_inst *next;
} T_comp_inmst;

/* comp_inst signal node pointer */
typedef T_comp_inst * TP_comp_inst;

/* -- s/

/* prototypes */

void comp_inst_list_clear(void);

void comp_inst_list_free(TP_comp_inst list);
void comp_inst_list_add_node(T_ident name);

183

void comp_inst_entity(T_ident entity);

void comp_inst_portmap(TP_portmap portmap);

void comp_inst_list_print(TP_comp_inst list);
TP_comp_inst comp_inst_list_get(void);

TP_comp_inst comp_inst_get(int id, TP_comp_inst ptr);

/* :/
#endit

184

E.9 COMP_IN.CPP

/*
VHDL. PARSER

File: COMP_IN.C
Date: 9 July 1992

This module handles the creation of a comp_inst’s list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include "thesis.h"

#include "comp_in.h"

#include "misc.h"

/* */

/* Storage for current comp_inst signal list %/

static TP_comp_inst comp_inst_list = NULL;

/%= */
void comp_inst_list_clear(void)

{
comp_inst_list = NULL;
}

void comp_inst_list_free(TP_comp_inst list)
{
TP_comp_inst ptr;

if(list == CURRENT_LIST) {
list = comp_inst_list;
}
while(list '= NULL) {
ptr = list->next;
free(list);
list = ptr;

}
void comp_inst_list_add_node(T_ident name)
{

TP_comp_inst new_node;

if((new_node = (TP_comp_inst)(malloc(sizeof(T_comp_inst)))) == KULL) {
yyerror("Out of memory in comp_inst_ADD_ID()");

185

exit(103);

}

new_node->name = name;
new_node->next = comp_inst_list;
comp_inst_list = new_node;

}

void comp_inst_entity(T_ident entity)
{
comp_inst_list->entity = entity;

}

void comp_inst_portmap(TP_portmap portmap)

{
comp_inst_list->portmap = portmap;
}
void comp_inst_list_print(TP_comp_inst list)
{
if(list == NULL) {
puts("Empty comp_instiation list");
}
else {
if(list == CURRENT_LIST) {
puts("Found CL; printing current component list:");
list = comp_inst_list;
}
while(list != NULL) {
printf("Name: %2d Entity: %2d\n",
list->name,list->entity);
puts("Port map list:");
portmap_list_print(list->portmap);
list = list->next;
}
}
}
TP_comp_inst comp_inst_list_get(void)
{
return comp_inst_list;
}
/* -/

// Return pointer to comp_inst specified by name in supplied comp_inst list
// Return NULL if not found
TP_comp_inst comp_inst_get(int name, TP_comp_inst ptr)
{
while(ptr != KULL && ptr->name != name) {
ptr = ptr->next;
}

return ptr;

186

N W

*

E.10 MISC.CPP

/*
VHD.. PARSER

File: MISC.C

Date: 2 July 1992

Miscellaneous routines for functions called from BISON
*/
#include "thesis.h”

#include "misc.h"

/*

/* Storage for current values */

static int current_port_direction;
static int current_type_mark;

/*

/* Routines for handling current port signal direction */

void direct_set(int new_dir)

{
current_port_direction = new_dir;
}
int direct_get()
{
return current_port_direction;
3
/*

/* Routines for handling current type mark */

void type_set(int new_type)
{
current_type_mark = new_type;

}
int type_get()
return current_type_mark;

}
/*

188

E.11 ENTITY.H

/*
VHDL PARSER

File: ENTITY.H
Date: 2 July 1992

This module handles the creation of an ENTITY by the
VHDL parser. These routines are called by the BISON program.

Routines:
entity_clear() -- Clear current entity settings
entity_id() -- Add current identitier to entity
entity_add_port() - Add current port list to entity
entity_print() - Print out specified entity ~ NULL prints
out current entity

*/

/* -/
#ifndef __entity_h__
#define __entity_h__ 1

#ifndef __ident_h__
#include "ident.h"
#endif

#ifndef __port_h__

#include "port.h"

#endif

/* -- */

typedef struct S_entity {
T_ident id;
TP_port port_list;
struct S_entity *next;

} T_entity;

/* Entity node pointer */
typedef T_entity * TP_entity;

/* */
/* prototypes #*/

void entity_list_clear(void);

void entity_add(void);

void entity_add_port(void);

void entity_c_list_print(void);

void entity_list_print(TP_entity list);
void entity_print(TP_entity list);

189

TP_entity entity_get(int id);

fommmv -

#endif

190

*/

E.12 ENTITY.CPP

/*
VHDL PARSER

F:™ »: ENTITY.C
Date: 2 July 1992

This module handles the creation of an ENTITY by the
VHDL parser. Thes~ routines are called by the BISON program.

*/

#include <stdio.h>

#include <stc._ib.h>

#include <assert.h>

#include <alloc.h>

#include <string.h>

#include "thesis.h"

#include "entity.h”

/* */

/* Current entity being created */

// static T_entity current_entity;
static TP_entity current_entity_list;

/* */
void entity_list_clear(void)
{
current_entity_list = NULL;
}
void entity_add(void)
{
TP_entity new_node;
it((new_node = (TP_entity)(malloc(sizeof(T_entity))})) == NULL) {
yyerror("Out of memory in E* TITY_ADD()");
exit(104);
}
new_node->id = ident_get();
new_node->port_list = 4ULL;
new_node->next = current_entity_list;
current_entity_list = new_node;
}
void entity_add_port(void)
{
current_entity_list->port_list = port_get();
}

void entity_c_list_print(void)

{

191

entity_print(current_entity_list);
}
void entity_list_print(TP_entity list)
{
if(list == NULL) {
puts(“Empty entity signal list");
}
else {
while(list '= NULL) {
entity_print(list);
list = list->next;

}
3

void entity_print(TP_entity list)
{
if(list == WULL) {
puts("Empty entity signal list");

}
else {
printf(“Entity id: *);
ident_print(&(list->id));
puts("") ;
puts("Entity signal list");
port_print(list->port_list);
puts(“ u);
}

}

// Return pointer to entity specified by ID
// Return NULL if not found
TP_entity entity_get(int id)
{
TP_entity ptr = current_entity_list;
while(ptr != BULL && ptr->id != id) {
ptr = ptr->next;
}
assert(ptr != NULL);
return ptr;

192

*/

E.18 GENERATE.H

//

//

// File: GENERATE.H
//

//

// 23 July 1992

//
//
#ifndef __generate h__
#define __generate_h__

/*

/*
/* Prototypes */

void generate_entity_name(int entity_name);
void generate_arch_nane(int arch_id);

void generate_ident_list(void);

generate_got_top_id(int top_id);
generate_got_top_entity_id(int id);
generate_got_top_arch_id(int id);

#endif

193

*/
*/

E.14 GENERATE.CPP

//

//

// File: GENERATE.C

//

//

// 22 July 1992

//

// This module handles the mcode generation for Calvin.

//

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include "“thesis.h"
#include "entity.h"
#include "arch.h"
#include "comp_in.h"
#include "misc.h"
#include "behave.hpp"
#include "signal.hpp"
#include "comsen.hpp"
/% */
// Static variables

static int top_id; // ¥ame of top configuration
static int top_entity_id; // Entity for top-level circuit
static TP_entity top_entity; // Pointer to top-level entity
static int top_arch_id; // Arch for top-level circuit
static TP_arch top_arch; // Pointer to’ top-level arch
static int current_config_id; // Current configuration id
static int save_ent_id; // Temp storage for current entity
static int save_arch_id; // Temp storage for current arch

TP_port G_commands;
TP_port G_sensors;

/* -— -—- - -*/
void so_far(void);
/* -_— - ———— */

// Save name of configuration
generate_got_top_id(int id)

{
// printf("--- CONFIGURATIOR %2d",id);
top_id = id;
}
/== */

// Save name of entity for top configuration
generate_got_top_entity_id(int id)
{

SignalRecord sr;

194

}

/*

char title[MAX_NAME_SIZE+10];

id;
entity_get(id);

top_entity_id
top_entity

TP_port port_list = top_entity->port_list;
while(port_list != NULL) {
switch(port_list->direction) {
case V_IN:
sprintf(title,"IN__#%a",port_list->id);
sr = SignalRecord(port_list->id,title,COMMAND_SR);
add_command(port_list->id);
add_signal_rec(sr);
break;
case V_OUT:
sprintf(title,”"QUT_#%d",port_list->id);
sr = SignalRecord(port_list->id,title,SENSOR_SR);
add_sensor(port_list->id);
add_signal_rec(sr);
break;
default:
yyerror("Illegal direction in generate_com_sig");
}

port_list = port_list->next;

// Save name for top arch
generate_got_top_arch_id(int id)

{

}
/*

SignalRecord sr;

id;
arch_get(id);

top_arch_id
top_arch

TP_signal signal_list = top_arch->signal_list;
while(signal_list != NULL) {
ST = SignalRecord(signal_list->id,"x",-987);
add_signal_rec(sr);
signal_list = signal_list->next;

}

*/

*/

// Found entity name to instantiate with
void generate_entity_name(int entity_name)

{

}
/*

save_ent_id = entity_name,;

-

// found arch name to instantiate with
void generate_arch_name(int arch_id)

195

*/

{

save_arch_id = arch_id;

}
/* */
void create_behave(int behave_id, TP_arch arch_ptr)
{
Behave bb;
SignalRecord sr_ptr;
bb = Behave(behave_id);
bb.set_block_id(arch_ptr->id);
TP_comp_inst this_comp = comp_inst_get(behave~id, top_arch~>comp_inst_list);
TP_portmap portmap = this_comp->portmap;
TP_assoc assoc = portmap->assoc_list;
while(assoc != NULL) {
// Find comp that matches this comp
TP_comp comp = comp_get(this_comp->entity, top_arch->comp_list);
TP_port port = port_get(assoc->left, comp->port);
sr_ptr = get_signal_rec(assoc—>right);
switch(port->direction) {
case V_IN:
bb.add_input(assoc->right,port->number);
sr_ptr.add_conns(behave_id);
break;
case V_0OUT:
bb.add_output (assoc~>right,port->number);
sr_ptr.set_driver_bi(behave_id);
break;
default:
yyerror("Illegal direction in (generate)create_behave");
}
mod_signal_rec(sr_ptr);
assoc = assoc->next;
}
add_behave_inst(bb);
}
/* */
void generate_ident_list{(void)
{
TP_arch arch_ptr = arch_get(save_arch_id);
TP_ident_list id_ptr = ident_list_get();
while(id_ptr != RULL) {
create_behave(id_ptr->id, arch_ptr);
id_ptr = id_ptr->next;
}
}
/* --- -~ -/
/* -- - - */

197

E 15 IDENT.H

/*#define __DEBUG__#*/
/*

VHDL PARSER

File: IDENT.H

Date: 2 July 1992

This module handles the identifiers encountered by BISON.

Routines:

ident_list_clear()--
ident_list_free() --
ident_list_add() --
ident_list_print()--

ident_list_get() --
ident_set() --
ident_get() -
ident_print() --

*/
/*

Clear current identifier list

Free memory of supplied ident list ptr

Add current ident to current identifier list
Print supplied ident list. If CURRENT_LIST,
prints out current ident list.

Return pointer to current ident list

Set identifier to supplied string

Return hash value of current identifier
Print out supplied identifier

#ifndef __ident_h__
#define __ident_h__ 1

typedef int T_ident;

/* Ident node %/

typedef struct S_ident {

T_ident id;

struct S_ident *next;

} T_ident_list;

/* Ident node pointer */

typedef T_ident_list #*

/* prototypes */

TP_ident_list;

void ident_list_clear(void);

void ident_list_free(TP_ident_list list);
void ident_list_add(void);

void ident_list_print(TP_ident_list list);
TP_ident_list ident_list_get(void);

void ident_set{char *s);

T_ident ident_get(void);

void ident_print(T_ident *id);

void ident_save(void);

198

T_ident ident_save_get(void);

void ident_c_list_print();
void ident_c_list_free();
void lit_set(char *str);
int lit_get(void);

#define MAX_IDENT_LEN 32 /+ Maximum length of an identifier =/

/*
#endif

199

E.16 IDENT.CPP

/+#define __DEBUG__#*/
/*

VHDL PARSER

File: IDENT.C
Date: 2 July 1992
This module handles the identifiers encountered by BISON.

x/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <alloc.h>

#include "thesis.h"

#include "ident.h"

/* */

/* Storage for current identifier */

static char identifier [MAX_IDENT_LEN+1];

static T_ident id_value;
static T_ident save_ident;

/* Storage for current identifier list #*/
static TP_ident_list ident_signal_list = NULL;

/* Storage for current integer lit */
static int int_lit_value = -1;

/* */
void ident_list_clear(void)

{

ident_signal_list = NULL;
}

void ident_c_list_free()
{
ident_list_free(ident_signal_list);

}

void ident_list_free(TP_ident_list list)
{
TP_ident_list ptr;

while(list != NULL) {

ptr = list->next;
free(list);

200

list = ptr;
}

void ident_list_add(void)

{
TP_ident_list new_node;
i2((new_node = (TP_ident_list)(malloc(sizeof(T_ident_list)))) == NULL) {
yyerror{('Out of memory in IDENT_ADD_ID()");
exit(105);
}
nev_node->id = ident_get();
new_node->next = ident_signal list;
ident _signal_list = new_node;
}
void ident_c_list_print()
{
puts("Printing current list:");
ident_list_print(ident_signal_ list);
}
void ident_list_print(TP_ident_list list)
{
if(list == NULL) {
puts("Empty ident signal list");
}
else {
while(list != NULL) {
ident_print(&(list->id));
printf(" ");
list = list->next;
}
}
} .
TP_ident_list ident_list_get(void)
{
return ident_signal_list;
}
/¥ e e */
void ident_set(char *s)
{

strncpy(identifier, s, MAX_IDENT_LEN);
identifier [MAX_IDENT_LEN] = ’\0’;

201

id_value = atoi(identifier+1);

}

T_ident ident_get{(void)

{
id_value = atoi(identifier+1);
return id_value;

}

void ident_print(T_ident *id)
{
printf("¥d",*id);

}
void ident_save(void)
{
save_ident = id_value;
}

T_ident ident_save_get(void)
{

return save_ident;

}
/*
void lit_set(char *str)
{

int_lit_value = atoi(str);
}
int lit_get(void)
{

return int_lit_value;
}
/*

202

E.17 MCODEH

/*
VHDL PARSER

File: MCODE.H

Date: 7 July 1992

Routines:
mcode_clear_list() -- Clear current mcode list pointer
mcode_add_id() —-- Add current id to current mcode list !!!NQT USED
mcode_add_id_list() -- Add current id_list to current mcode list
mcode_print(list) -- Print specified mcode list. If CURRENT_LIST,
print current mcode list.

ncode_get() -- Get pointer to current mcode list.

*/

/* */

#ifndef __mcode_h__
#define __mcode_h__ 1

#ifndef __ident_h__
#include "ident.h"
#endif

/* Port mcode node */
typedef struct S_mcode {
int code;
struct S_mcode *prev;
struct S_mcode *next;
} T_mcode;

/* Port mcode node pointer */
typedef T_mcode * TP_mcode;

/*- /
/* Codes for MCODE commands */
// 'tvivy MERGE WITH MCODE.H tt1110

#define M_NULL -1 // Null opcode

#define M_GET -2 // Get signal (signal #)
#define M_POST -3 // Post signal (signal #, value, delta time)
#define M_PUSH -4 // Push??

#define M_NOQT -5 // NOT (value)

#detine M_AND -6 // AND (valuel, value2)
#define M_OR -7 // OR (valuel, value2)
#define M_XOR -8 // XOR (valuel, value2)
#detine M_END -9 // End execution

#define M_NAND -10

#detine M_NOR -11

203

#define M_POP -12 // Pop and discard top value on stack
// Store (addr) -- Place TOS in temp store
// Retrieve (addr) -- Place value from store on TOS

#define M_STORE -13
#define M_RETRV -14

/*

/* prototypes */

void mcode_clear_list(void);

void mcode_list_free(TP_mcode list);
void mcode_add(int new_code);

int mcode_pop(TP_mcode *mod_list);
void mcode_pop_top(TP_mcode *list);
TP_mcode mcode_begin(TP_mcode list);
void mcode_print (TP_mcode list);
TP_mcode mcode_get (void);

void mcode_c_pop_top(void);

void mcode_c_list_free(void);

int mcode_c_pop(void);

TP_mcode mcode_c_begin(void);

void mcode_c_print{(void);

/*

#endif

204

*/

*/

E.18 MCODES.CPP
/*
VHADL PARSER
File: mcode.C

Date: 7 July 1992

This module handles the microcode generation.
*/

#include <stdio.h>
#include <stdlib.h>
#*include <malloc.h>
#include "thesis.h"
#include "mcode.h"
#include "misc.h"

/*

/+ Storage for current mcode mcode list */

static TP_mcode mcode_list = NULL;

/==
void mcode_clear_list(void)
{
mcode_list = NULL;
}
void mcode_c_list_free(void)
{
mcode_list_free(mcode_list);
}
void mcode_list_free(TP_mcode list)
{
TP_mcode ptr;
while(list != NULL) {
ptr = list->prev;
free(list);
list = ptr;
}
}

void mcode_add(int new_code)
{

TP_mcode new_node;

if((new_node = (TP_mcode)(malloc(sizeof (T_mcode)))) == NULL) {

205

*/

*/

yyerror(“Out of memory in PORT_ADD_ID()");
exit(123);
}
new_node->code = new_code;
new_node->prev = mcode_list;
new_node->next = NULL,;
if(mcode_list !'= NULL) {
mcode_list->next = new_node;

}
mcode_list = new_node;

}

int mcode_c_pop(void)
{

return mcode_pop(&mcode_list);
}

int mcode_pop(TP_mcode *mod_list)
{
TP_mcode list = *mod_list;
TP_mcode old_node;
int node_value;

if(list == NULL) {
return ERROR;
}

/% Pop top node off list */

old_node = list;

list = list->prev;

if(list != WULL) {
list->next = NULL;

}

/* Return changed list */

if(mod_list == CURRENT_LIST) {
mcode_list = list;

}

else {
*mod_list = list;

}

/* Get value of node */
node_value = old_node ->code;

/* Free the old node */
free(old_node);

return node_value;

}

/* pop and discard top of list */

206

L ———————

void mcode_c_pop_top(void)
{
mcode_c_pop();

}

void mcode_pop_top(TP_mcode *1ist)
{
mcode_pop(list);

}
TP_mcode mcode_c_begin(void)
{
return mcode_begin(mcode_list);
} ’

TP_mcode mcode_begin(TP_mcode list)
{
if(list == NULL) {
return NULL;
}
while(list->prev !'= NULL) {
list ='1ist—>prev;

}
return list;
}
void mcode_c_print(void)
{
puts("Printing current mcode list:");
mcode_print (mcode_list);
}

void mcode_print(TP_mcode list)
{
if(list == NULL) {
puts("Empty mcode mcode list");
}
else {
list = mcode_begin(list);
while(list != NULL) {
switch(list->code) {
case M_GET:
puts("Get_signal");
break;
case M_POST:
puts("Post");
break;
case M_AND:
puts("And");
break;
case M_OR:

207

puts("0xr");
break;

case M_NAND:
puts(“Nand");
break;

case M_KNOR:
puts(“Nor");
break;

case M_XOR:
puts("Xor");
break;

case M_NOT:
puts("Not");
break;

case M_END:
puts("End");
break;

case M_POP:
puts("Pop");
break;

case M_STORE:
puts("Store");
break;

case M_RETRV:
puts("Retrieve");
break;

default:
printf(*:%d\n",list->code);

}

list = list->next;

}

TP_mcode mcode_get{(void)
{
return mcode_c_begin();

}

/e- -

208

*/

E.19 MISCH

/*
VHDL PARSER

File: MISC.H

Date: 2 July 1992

Miscellaneous routines for functions called from BISON

Routines:
direct_set()
direct_get()
type_set()
type_get()
*/
/%

Set parsed direction
Get current direction
Set current type
Get current type

#itndef __misc_h__
#define __misc_h__

/*

/* Constants */

#define V_IN
#define V_OUT
#define V_BIT
/%

1
2
3

/* Port direction IN */
/* Port direction OUT %/
/* Type mark BIT */

/* prototypes */

#ifdef __BORLANDC__

void direct_set(int new_dir);
int direct_get(void);

void type_set(int new_type);
int type_get(void);

#else

void direct_set();
int direct_get();

void type_set();
int type_get();

#endif

/*

#endif

209

E.20 MISC.CPP

/*
VHDL PARSER

File: MISC.C

Date: 2 July 1992

Miscellaneous routines for functions called from BISON
*/

#include "thesis.h"
#include "misc.h"

/*

/* Storage for current values */

static int current_port_direction;
static int current_type_mark;

/*

/* Routines for handling current port signal direction */

void direct_set(int new_dir)

{
current_port_direction = new_dir;
}
int direct_get()
{
return current_port_direction;
}
/*

/* Routines for handling current type mark */
void type_set(int new_type)
{

current_type_mark = new_type;

}
int type_get()

return current_type_mark;

*/

}
/*

210

*/

E.21 PORT.H

/*
VHDL PARSER

File: PORT.H
Date: 2 July 1992

This module handles the creation of a port’s list of
input/output signals. Theses functions are called by the BISON

program.
Routines:
port_clear() -~ Clear current port list
port_add_id() —= Add current ident to current port list !!! NOT USED
port_add_id_list() -- Add current ident_list to current port list
port_print(list) -- Print supplied port list. If CURRENT_LIST,
print out the current list.
port_get() -- Get pointer to current list.
*/
/* */
#ifndef __port_h__ s
#define __port_h__ 1
#ifndef __ident_h__
#include "ident.h"
#endif
/* Port signal node */
typedef struct S_port {
T_ident id;
int number;
int direction;
int type;
struct S_port *next;
} T_port;

/* Port signal node pointer */
typedef T_port * TP_port;

/* */
/* prototypes =/

void port_clear(void);

void port_add_id(void);

void port_add_id_list(void);
void port_print(TP_port list);
TP_port port_get(void);

211

TP_port port_get(int id, TP_port ptr);

/*
#endif

212

E.22 PORT.CPP

/*
VHEDL PARSER

File: PORT.C
Date: 2 July 1992

This module handles the creation of a port’s list of
input/output signals. Theses functions are called by the BISON
program.

*/

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <malloc.h>

#include "thesis.h"

#include "port.h"

#include "misc.h"

/* */

/* Storage for current port signal list */

static TP_port port_signal_list = NULL;

static int in_port_count = 0;
static int out_port_count = 0;
/* x/
void port_clear(void)
{ .
port_signal_list = NULL;
in_port_count = 0; // Current port location number

out_port_count

}

L]
o

// Current port location number

void port_add_id(void)
{
TP_port new_node;

if((new_node = (TP_port)(malloc(sizeot(T_port)))) == NULL) {
yyerror("Out of memory in PORT_ADD_ID()");

exit(124);
}
new_node->id = ident_get();
switch(new_node->direction) {
case V_IN:
new_node->number = in_port_count++;
break;
case V_QUT:
new_node->number = out_port_count++;
break;

213

}

default:

puts("1i1!1 Illegal direction in port_add_id, port.cpp");
exit(125);

}

new_node->next = port_signal_list;

port_signal_list = new_node;

void port_add_id_list(void)

{

}

TP_port new_node;
TP_ident_list new_list;
TP_ident_list 1st_ptr;

new_list = lst_ptr = ident_list_get();

while(1lst_ptr != NULL) {

if((new_node = (TP_port)(malloc(sizeof(T_port)))) == RULL) {
yyerror("Out of memory in PORT_ADD_ID_LIST()");
exit(126);

}

new_node->id = lst_ptr->id;

new_node->direction = direct_get();

switch(new_node~>direction) {

case V_INK:
new_node->number = in_port_count++;
break;

case V_0OUT: .
new_node—->number = out_port_count++;
break;

default:
puts("!!it! Tllegal direction in port_add_id_list, port.cpp");
exit(127);

}

new_node->type = type_get();

new_node->next
port_signal_list
lst_ptr

port_signal_list;
new_node;
lst_ptr->next;

}

ident_list_free(new_list);

void port_print(TP_port list)

{

if(list == NULL) {
puts("Empty port signal list");
}
else {
if(list == CURRENT_LIST) {
puts("Found CL; printing current list:");
list = port_signal_list;

214

}
while(list !'= RULL) {
printf(“Name: ");
ident_print(&(list->id));
printf(" #:%2d",list->number);
printf(" Dir: ");
switch(list->direction) {
case V_IN: printf("IN ");break;
case V_OUT: printf("OUT");break;
default: printf("Unknown");
}
printf(" Type: BIT");
puts("");
list = list->next;

}

TP_port port_get(void)
{
return port_signal_list;
}
/== */
// Return pointer to port specified by id in supplied port list
// Return NULL if not found
TP_port port_get(int id, TP_port ptr)
{

while(ptr != NULL &% ptr->id != id) {
ptr = ptr->next;

}

if(ptr == NULL) {

exit(128);
}
return ptr;

}
/* */

215

E.28 PORTMAP.H

/*
VHDL PARSER

File: PORTMAP.H
Date: 9 July 1992

This module handles the creation of a portmap’s list of
input/output signals. Theses functions are called by the BISON

program.
Routines:
portmap_clear() -~ Clear current portmap list
portmap_add_id() ~- Add current ident to current portmap list D
portmap_add_id_list() -- Add current ident_list to current portmap list
portmap_print(list) -- Print supplied portmap list. If CURRENT_LIST,

print out the current list.

portmap_get() -~ Get pointer to current list.

*/

/* */

#ifndef __portmap_h__
#define __portmap._h__ 1

#ifndef __assoc_h__
#include "assoc.h"
#endif

/* portmap signal node */

typedef struct S_portmap {
TP_assoc assoc_list;
struct S_portmap *next;

} T_portmap;

/+ portmap signal node pointer */
typedef T_portmap * TP_portmap;

/* =/

/* prototypes */

/* */
void portmap_list_clear(void);

void portmap_list_free(TP_portmap list);

void portmap_list_add_node(TP_assoc list);

void portmap_list_print(TP_portmap list);

TP_portmap portmap_get(void);

/* -*/
#endif

216

217

E.24{ PORTMAP.CPP

/*
VHDL PARSER

File: PORTMAP.C
Date: 9 July 1992

This module handles the creation of a portmap’s list of
input/output signals. Theses functioas are called by the BISON
program.

*/

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <malloc.h>

#include "thesis.h"

#include "portmap.h"

#include "misc.h"

g e e et */

/* Storage for current portmap signal list */

static TP_portmap portmap_list = NULL;

/* */
void portmap_list_clear(void)

{

portmap_list = RULL;
}

void portmap_list_free(TP_portmap list)
{
TP_portmap ptr;

if(list == CURRENT_LIST) {
list = portmap.list;

}

while(list != NULL) {
ptr = list->next;
free(list);
list = ptr;

}
void portmap_list_add_node(TP_assoc list)
{

TP_portmap new_node;

if((new_node = (TP_portmap)(malloc(sizeof(T_portmap)))) == NULL) {

218

vyerror("Dut of memory in portmap_ADD_ID()");
exit(107);
}
new_node->assoc_list
new_node->next

list;
portmap_list;

portmap_list = new_node;
}
void portmap_list_print(TP_portmap list)
{
if(list == NULL) {
puts("Empty portmapiation list");
}
else {
if(list == CURRENT_LIST) {
puts("Foudd CL; printing current portmap list:");
list = portmap_list;
}
while(list '= KULL) {
puts("Association list:");
assoc_list_print(list->assoc_list);
list = list->next;
}
}
}
TP_portmap portmap_get(void)
{
return portmap_list;
}
et e */

219

E.25 PROCESS.H

/*
VHDL PARSER

File: PROCESS.H
Date: 14 July 1992

This module handles the creation of an process by the
VHDL parser. These routines are called by the BISON program.

Routines:
process_clear() -- Clear current process settings
process_add_mcode() - Add current mcode
process_print() - Print out specified process ~ RULL prints
out current process

*/

/* */
#ifndef __process_h__
#define __process_h__ 1

#ifndef __mcode_h__
#include "mcode.h"
#tendif

typedef struct S_process {
TP_mcode mcode;
} T_process;

#ifdef __process_c__

T_process NULL_PROCESS ={NULL};
#else

extern T_process NULL_PROCESS;
#endif

/* prototypes */

void process_clear(void);

void process_add_mcode(void);

T_process process_get(void);

void process_c_print(void);

void process_print(T_process *ent);

int create_c_sim_process(void);

int create_sim_process(T_process *proc);
void new_sim_block(int arch_id);

void add_code_to_sim_block(int code_id, char *code_title);
void finish_sim_block(void);

void create_all_hypo(void);

220

*

#endif

221

E.26 PROCESS.CPP

/*

VHDL PARSER

File:

Date: 14 July 1992

PROCESS.C

This module handles the creation of an process by the

VHDL parser. These routines are called by the BISON program.

Fault hypotheses are also added in this module.

*/
#define __process_c__ 1
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include "thesis.h"
#include "process.h"
#include "block.hpp"
#include "code.hpp"
/* */
/* Current process being created */
static T_process current_process;
/* -- */
void process_clear(void)
{
current_process.mcode
}
/* */
void process_add_mcode(void)
{
current_process.mcode = mcode_get();
}
/* */
T_process process_get(void)
{
return current_process;
}
/* -=/
void process_c_print(void)
{
process_print(¤t_process);
}
/* */

void process_print(T_process *ent)

{

222

if(ent->mcode == NULL) {
puts("Null Process");

}

else {
puts("process mcode list");
mcode_print(ent->mcode);

}
}
/* */
/% */

// Create code-structure for simulator use. This routine will take the
// supplied code process and create a CODE block. This routine will be
// called by create_sim_block()

int create_c_sim_process(void)

{
return create_sim_process(¤t_process);
}
int create_sim_process(T_process *proc)
{
static int code_count = 0; // ID for new code block; return value
Code code_block;
code_block = Code(code_count);
T_mcode *mcode_ptr = proc~>mcode;
while(mcode_ptr !'= NULL) {
code_block.add_mcode(MCode(mcode_ptr->code));
mcode_ptr = mcode_ptr->next;
}
add_code_block(code_block);
return code_count++;
}
/* */

// Storage for new sim block object
static block new_block;

void new_sim_block(int arch_id)
< .

new_block = block{arch_id);
}

void add_code_to_sim_block(int code_id, char *code_title)

{
new_block.add_code(code_id, code_title);

}

223

void finish_sim_block(void)
{
add_block_inst(new_block);
}
/* */

int hypo_in_stuck_hi(Code &good_code, int get_number)
{

int mcode_pos 0;

int code_get_no = M_NULL;

int found_get = FALSE;

char title_str[MAX_STR_LEN+1];
MCode mcode_ref;

mcode_clear_list();
process_clear();
while(mcode_pos < good_code.get_code_blk_len(}) {
mcode_ref = good_code.get_mcode_at(mcode_pos);
it (mcode_ref.get_op_code() == M_GET) {
if(code_get_no == get_number) {
mcode_add(M_POP); // Remove signal offset
mcode_add(1); // Stuck HI
found_get = TRUE;

}
else {
mcode_add(mcode_ref.get_op_code());

}

}

else {
mcode_add(mcode_ref.get_op_code());

}

code_get_no = mcode_ref.get_op_code();
mcode_pos++;
}
if(found_get) {
process_add_mcode();
sprintf(title_str, "Input #%d stuck hi ",get_number);
add_code_to_sim_block(create_c_sim_process(), title_str);
}
return found_get;

}

/* - */
int hypo_in_stuck_low(Code &good_code, int get_number)

{

int mcode_pos =0;

int code_get_no = M_NULL;

int found_get = FALSE;

char title_str [MAX_STR_LEN+1];
MCode mcode_ref;

224

}

/*

{

mcode_clear_list();
process_clear();
while(mcode_pos < good_code.get_code_blk_len()) {
mcode_ref = good_code.get_mcode_at(mcode_pos);
it (mcode_ref.get_op_code() == M_GET) {
if(code_get_no == get_number) {
mcode_add(M_POP); // Remove signal offset
mcode_add(0); // Stuck LOW
found _get = TRUE;

}
else {
mcode_add (mcode_ref.get_op_code());
}
}
else {
mcode_add (mcode_ref.get_op_code());
}

code_get_no = mcode_ref.get_op_code();
mcode_pos++;
}
if(found_get) {
process_add_mcode();
sprintf(title_str, "Input #%d stuck low",get_number);
add_code_to_sim_block(create_c_sim_process(), title_str);

}

return found_get;

*/
int hypo_out_stuck_hi(Code &good_code, int post_number)
int mcode_pos = 0;
int found_post_no = 0;
int found_post = FALSE;

char title_str[MAX_STR_LEN+1];
MCode mcode_ref;

mcode_clear_list();
process_clear();
while(mcode_pos < good_code.get_code_blk_len()) {
mcode_ref = good_code.get_mcode_at(mcode_pos);
if(mcode_ref.get_op_code() == M_POST) {
if(found_post_no == post_number) {
mcode_add (0); // Temp store addr to save time
mcode_add{M_STORE); // Store delta time
mcode_add(M_POP); // Remove old value
mcode_add(1); // Stuck HI
mcode_add (0) ; // Temp store addr
mcode_add(M_RETRV); // Get stored delta time
mcode_add(M_POST); // POST
found_post = TRUE;

225

}

else {
mcode_add(mcode_ref.get_op_code());

} :
found_post_no++;

}

else {
mcode_add(mcode_ref.get_op_code());

}

mcode_pos+t;
}
if (found_post) {
process_add_mcode();
sprintf(title_str, "Outut #%d stuck hi ",post_number);
add_code_to_sim_block(create_c_sim_process(), title_str);
}
return found_post;

}

Vi

int hypo_out_stuck_low(Code &good_code, int post_number)
{

int mcode_pos = 0;

int found_post_no 0;

int <found_post = FALSE;

char title_str[MAX_STR_LEN+1];

MCode mcode_ref;

]

mcode_clear_list();
process_clear();
while(mcode_pos < good_code.get_code_blk_len()) {
mcode_ref = good_code.get_mcode_at{(mcode_pos);
if(mcode_ref.get_op_code() == M_POST) {
if(found_post_no == post_number) {
mcode_add(0); // Temp store addr to save time
mcode_add(M_STORE); // Store delta time
mcode_add(M_POP); // Remove old value
mcode_add(0); // Stuck LOW
mcode_add(0) ; // Temp store addr
mcode_add(M_RETRV); // Get stored delta time
mcode_add(M_POST); // POST
found_post = TRUE;

}
else {
mcode_add(mcode_ref .get_op_code());
}
found_post_no++;
}
else {
mcode_add(mcode_ref.get_op_code());
}

226

mcode_pos++;
}
if(found_post) {
process_add_mcode();
sprintf(title_sty, "Outut #%d stuck low",post_number);
add_code_to_sim_block(create_c_sim_process(), title_str);
}
return found_post;

}

/* */

// The working model of a process is defined as code #0
#define WORKING_MODEL 0O

void create_all_hypo(void)

{
int get_mno,
post_no;
Code &code_ptr = get_code_block(new_block.get_code(WORKING_MODEL));
// Bypothesize inputs of component stuck high
post_no = 0;
vhile(hypo_out_stuck_hi (code_ptr, post_no++)) {}
// Bypothesize inputs of component stuck low
post_no = 0;
while(hypo_out_stuck_low(code_ptr, post_no++)) {}
// HypothesiZe inputs of component stuck high
get_no = 0;
while(hypo_in_stuck_hi (code_ptr, get_no++)) {}
// Hypothesize inputs of component stuck low
get_no = 0;
while(hypo_in_stuck_low(code_ptr, get_no++)) {}
}
/* */

227

E.27 SIGNAL.H

/*
VHDL PARSER

File: SIGNAL.H

Date: 7 July 1992

Routines: .
signal_clear_list() -- Clear current signal list pointer
signal_add_id() -- Add current id to current signal list !!!NOT USED
signal_add_id_list() —- Add current id_list to current signal list
signal_print(list) -- Print specified signal 1list. If CURRENT_LIST,
print current signal list.

signal_get() -- Get pointer to current signal list.

*/

/* */

#ifndef __signal h__
#define __signal h__ 1

#ifndef __ident_h__
#include "ident.h”
#endif

/* Port signal node */
typedef struct S_signal {

T_ident id;

int type;

struct S_signal *next;
} T_signal;

/* Port signal node pointer */
typedef T_signal *+ TP_signal;

/- */

/* prototypes */
#ifdef __BORLANDC__

void signal_clear_list(void);
void signal_add_id(void);

void signal _add_id_list{void);
void signal_print(TP_signal list);
TP_signal signal_get{void);

#else

void signal_clear_list();

void signal_add_id();
void signal_add_id_list();
void signal_print();
TP_signal signal_get();

228

#endif

/:
#endif

229

E.28 SIGNALP.CPP

/*
VHDL PARSER

File: SIGNAL.C
Date: 7 July 1992

This module handles the creation of signals.
*/

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include "thesis.h"

#include "signal.h"

#include "misc.h"

/* */
/+ Storage for current signal signal list */ :

static TP_signal signal_signal_list = KULL;

/* */
void signal_clear_list(void)
{
signal_signal_list = NULL;
}
void signal_add_id(void)
{
TP_signal new_node;
if((new_node = (TP_signal)(malloc(sizeof(T_signal)))) == NULL) {
yyerror("Out of memory in PORT_ADD_ID()");
exit(108);
}
new_node->id = ident_get();
new_node->next = signal_signal_list;
signal_signal_list = new_node;
}

void signal_add_id_list(void)
{
TP_signal new_node;
TP_ident_list new_list;
TP_ident_list 1lst_ptr;

nev_list = lst_ptr = ident_list_get();
while(1lst_ptr != RULL) {

if((new_node = (TP_signal)(malloc(sizeof(T_signal)))) == NULL) {

230

yyerror("Out of memory in SIGNAL_ADD_ID_LIST()");

exit(109);
}
new_node->id = 1lst_ptr->id;
new_node->type = type_get();

new_node->next signal_signal_list;
signal_signal_list = nev_node;
1st_ptr = lst_ptr->next;

}

ident_list_free(new_list);

}

void signal_print(TP_signal list)
{
if(list == NULL) {
puts("Empty signal signal list");
}
else {
if(1list == CURRENT_LIST) {
puts("Found NULL; printing current signal list:");
list = signal_signal_list;
}
while(list != NULL) {
printf("Name: ");
ident_print(&(list->id));
printf(" Type: BIT");
p“tS("");
list = list->next;

}

TP_signal signal_get(void)
{
return signal_signal_list;
}
/* : */

231

Appendix F. Simulator/Diagnostic Source Code

F.1 Overview

This appendix contains the code for Calvin’s VHDL simulator and diagnostic routines. A
module generally consists of a header file and associated code file. These have the same or similar

&

names, with a “.hpp” extension for the header and a “.cpp” extension for the code file. The

following modules were discussed in Chapter I11:

BEHAVE - section 3.3.4.6

BLOCK - section 3.3.4.7

e CODE - section 3.3.4.8

¢ MCODE - section 3.3.4.9

SIGNAL - section 3.3.4.5.

The following modules handle specific minor tasks:

COMSEN - manage the lists of commands and sensors

INT - A Object shell for an integer. This module was required so that integer values could

be used with Borland’s container library.

STAT - This module collected the statistics discussed in section 4.1.1.

THESIS - This module contained the various constants used throughout the simulator/diagnostic

routines.

The module MAIN contains Calvin’s user interface. Here is were Calvin parses the command line,
and where Calvin’s system flags are set. Calvin opens the source file, and sends it to the VHDL

parser. Calvin then calls the diagnostic routines contained in the module named CALVIN.

232

The VHDL module is Calvin’s VHDL simulator. Most of the VHDL simulation routines
are gathered here. This module uses the signal, behave, block, and code objects to perform
the simulation. The simulation is controlled by a function at the end of the VHDL module,
vhdl.main loop() . The activation record used by the VHDL simulator is defined in the module

AR.

The diagnostic routines are gathered into the module CALVIN. These routines include

suspect collection and fault insertion. The main diagnostic algorithm is also in CALVIN.

F.2 AR.HPP

//

// AR.HPP

//

// Activation Record Class
//

// Modified 16 July 1992
//

#ifndef __AR_HPP__
#define AR_BPP__ 1

#include <sortable.h>
#define ActiveRecordClass 222

class ActiveRecord : public Sortable {

public:

ActiveRecord() {
time = -1;
sr_ptr = -1;
value = -1;

}

ActiveRecord(int new_time, int new_sr_ptr, int new_value) {
time = new_time;
Sr_ptr = new_sr_ptr;
value = new_value;

}

int get_sr_ptr(void) {
return sr_ptr;

}

int get_value(void) {
return value;

}

233

int get_time(void) {
return time;

X

virtual int isEqual(const Object& otherObj) comnst {
return time == ((ActiveRecord&) otherObj).time;

}

virtual int isLessThan(const Object& otherObj)} const {
return time < ((ActiveRecord &) otherObj).time;

}

virtual classType isA() const {return ActiveRecordClass;}

virtual char *name0f() const {return "Active Record";}
virtual hashValueType hashValue() const {
return time;

}
virtual void printOn(ostream& coutt) const {
coutt << "Time: " << time << " srptr: " << sr_ptr
<< " Value:'" << value;
}
private:
int time;

int sr_ptr;
int value;

#endif

234

F.8 BEHAVE.HPP

//
//
// BEHAVE.HPP

/7

// Behave Class

//

// 16 July 1992

/7

// Behavie instance object
//
//

#include "thesis.h"
#define MAX_CODE 20 // Maximum number of bodies for behave

#define MAX_BEHAVE_INST 40 // Max number of behaviors in simumlation

class Behave {

public:
Behave();
Behave(int new_id);
int get_id(void); // Get id number
void set_code_select(int); // Select code for execution
int get_current_select(void);// Get current code nuber
void set_block_id(int); // Set block id to exec for this behave
int get_block_id(void); // Get block id to exec
int get_code_count(void); // Return number of bodies
void add_input(int); // Add new input to input list
void add_input(int,int); // Add new input to position in list
int get_input(int); // Get input id

int get_input_count(void); // Return number of inputs

void add_output(int); // Add new output to output list
void add_output(int,int); // Add new output to position in list
int get_output(int); // Get output id

int get_output_count(void); // Return number of outputs

void print(char *); // Debug print
private:
int id; // Int name of behave
int block_id; // ID of block to exec for this behave
int code_select; // Current code for Behave execution
int input{MAX_IN]; // List of inputs to Behave
int last_in; // Last input added
int output[MAX_OUT]; // List of outputs from Behave
int last_out; // Last output added
};

235

//

// Behave instance storage management routines

void reset_behave_inst(void);

void add_behave_inst(Behave &new_behave);

int get_last_behave_inst(void);

int get_behave_id_at(int pos); // Get behave it at position
Behave &get_behave_inst(int id);

void behave_inst_print(char *s);

void f£lush_behave_mark(void);

void mark_behave(int id);

int is_behave_marked(int pos);

//

236

F.{ BEHAVE.CPP

//

// BEBAVE.CPP
//

// Behave Class
//

// 16 July 1992
//
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <assert.h>

#include "behave.hpp"
#include "block.hpp"

//

// Storage for Behave instance

static Behave behave_storage[MAX_BEHAVE_INST];
static int behave_mark [MAX_BEHAVE_INST];
static int last_behave_inst;

//
// Local function prototypes
int translate_id_to_pos(int id);

//

// Clear behave instance mark list
void flush_behave_mark(void)

{
for(int i=0;i<MAX_BEHAVE_INST;++i) {
behave_mark[i] = FALSE;
}
}
//

// Mark a behave instance
void mark_behave(int id)
{
behave_mark[translate_id_to_pos(id)] = TRUE;
}

//
// Return mark status of a behave
int is_behave_marked(int id)
{

return behave_mark[translate_id_to_pos(id)];
}
// -

//
void reset_behave_inst(void)
{

last_behave_inst = 0;

}

237

//

void add_behave_inst(Behave &new_behave)

{
assert(last_behave_inst<MAX_BEHAVE_INST);
behave_storage[last_behave_inst++] = new_behave;
}
//
int translate_id_to_pos(int id)
{
for(int i=0; i<last_behave_inst; ++i) {
if(behave_storage[i].get_id() == id) {
return i;
}
}
printf(“Invalid id numbr #%d in translate_id_to_pos()\n",id);
exit(1);
return -1;
} .
//
Behave &get_behave_inst{int id)
{
for(int i=0; i<last_behave_inst; ++i) {
if(behave_storagelil.get_id() == id) {
return behave_storagel[il;
}
}
printf("!1111t Bad id ‘%d’in get_behave_inst---behave.cpp\n",id);
exit(1);
return behave_storage(0];
}
//
int get_behave_id_at(int pos)
return behave_storage[pos] .get_id();
}
//
int get_last_behave_inst(void)
{
return last_behave_inst;
}
// - ~-
void behave_inst_print(char *s)
{
printf(s);
1or(int i=0; i<last_behave_inst; ++i) {
printf('-—--- behave inst %2d----- \n",i);
behave_storage[il.print("");
getch();
}
puts(" ---");
}

238

//==z=====c ===
Behave: :Behave()

{
id = 0;
last_in = last_out = O;
code_select = 0;
}
//
Behave: :Behave(int new_id)
{
id = new_id;
last_in = last_out = 0;
code_select = 0;
}
//
int Behave::get_id(void)
{
return id;
}
ko4
void Behave::set_code_select(int new_code_select)
{
code_select = new_code_select;
}
// -
int Behave::get_current_select(void)
{
return code_select;
}
//
void Behave::set_block_id(int new_block_id)
{
block_id = new_block_id;
}
//
int Behave::get_block_id{(void)
{
return block_id;
}
//
int Behave::get_code_count(void)
{
return get_block_inst(block_id).get_code_count();
}
//
void Behave::add_input(int input_id)
{
assert(last_in < MAX_IN);
input[last_in++] = input_id;
}

239

//
void Behave::add_input(int input_id, int input_pos)
{

assert(input_pos < MAX_IN);

input[input_pos++] = input_id;
if(input_pos>=last_in) {
last_in = input_pos;
}
}
//
int Behave::get_input(int input_no)

{

assert (input_no<last_in);
assert (input_no>=0);

return input[input_no];
}
//
int Behave::get_input_count(void)

{

return last_in;
}
//
void Behave::add_output(int output_id)
{

assert(last_out < MAX_OUT);

output [last_out++] = output_id;
}
//
void Behave::add_output(int output_id, int output_pos)
{

assert(output_pos < MAX_OUT);

output [output_pos++] = output_id;
if(output_pos>=last_out) {
last_out = output_pos;
}
}
//
int Behave::get_output{int output_no)

{

if(output_no >= last_out) {
printf("ERR: this=%d output_no=%d last_out=%d\n", id,output_no,last_out);
exit(-1);

}

assert (output_no<last_out);

assert(output_no>=0);

return output [output_nol;

240

}
//
int Behave::get_output_count(void)
{
return last_out;
}
//
void Behave::print(char #*s)
{
printf(s);

printf("Behave id: %2d Block id:%2d Curremt code: %2d\n",id,
block_id,code_select);
puts("Inputs:");
for(int i=0;i<last_in;++i) {
printf("%2d| input id %2d\n",i,inputl[il);
}
puts("Qutputs:");
for(i=0;i<last_out;++i) {
printf£("%2d| output id %2d\n",i,output[il);
}
}
//

241

F.5 BLOCK.HPP

//
//
// BLOCK.EPP

//

// Process Block Class
//

// 30 July 1992

//
#ifndef
#define

_BLOCK_HPP_
.BLOCK_HPP_

#define
#define
#define
//

MAX_CODES 20
MAX_BLOCK_IKNST 10
MAX_STR_LEN 20

// Maximum number of code bodies for block
// Max number of blocks in simulation

class block {

public:
block(int id);
block(void);
“block();
int get_id(void);
void add_code(int,char *);
int get_code(int);
int get_code_count(void);
char *hyp_str_get(int);
void print(char *s);

private:
int id;
int sim_code_id[MAX_CODES];

// Constructor

// Destructor

// Get id number

// Add new code to code list
// Get code id

// Return number of bodies
// Return hypothesis title
// Print block description

// Int name of block
// VHDL microcode code number

char hyp_str[MAX_CODES] [MAX_STR_LEN+1]; // Strings for hypothesis’ name
int last_code_no; // Last code number added

};

//

// block instance storage management routines

void reset_block_inst(void);

void add_block_inst(block &new_block);

int get_last_block_inst{void);

int get_block_id_at(int pos); // Get block it at position

block &get_block_inst(int id);

void block_inst_print(char *s);

//

#endif

242

F.6 BLOCK.CPP

//
//
// BLOCK.CPP

//

// Process Block Class
//

// 30 July 1992

//

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#include <alloc.h>
#include <assert.h>
#include "block.hpp"

//

// Storage for block instance

static block block_storage[HAX_BLOCK_INST];
static int last_block_inst;

//
block: :block(int new_id)
{

id = new_id;

last_code_no = 0;
// Clear all hypothesis strings
for(int i=0;i<MAX_CODES;++i) {

strcpy(hyp_str(il, "---");
}
}
block: :block(void)
{
id = -1;
last_code_no = 0;
// Clear all hypothesis strings
for(int i=0;i<MAX_CODES;++i) {
strcpy(hyp_strlil, "---");
}
}
block: : “block()
{

// printf("BLoCK:: DELETE Y%p\n",this);getch();
}

//
int block::get_id(void)
{

return id;

}

243

//
void block::add_code(int code_id, char *new_hyp_str)
{

assert(last_code_no <MAX_CODES);

sim_code_id[last_code_no] = code_id;
strncpy (hyp_strllast_code_nol, new_hyp_str, MAX_STR_LEN);
last_code_no++;

}

//
char *block::hyp_str_get(int number)
{

return hyp_str[number];
}
//

int block::get_code(int code_no)
{
assert(code_no<last_code_no);
assert(code_no>=0);

return sim_code_id[code_no];

}

//
int block::get_code_count(void)
{

return last_code_no;
}
//

void block::print(char *s)
{
printf(s);
printf("Block id: %2d\n",id);
puts("Codes:");
for(int i=0;i<last_code_no;++i) {
printf("*%2d| code id %2d\n",i,sim_code_id[i]);
}
}

//
//

void reset_block_inst(void)
{

last_block_inst = 0;
}

//
void add_block_inst(block &new_block)
{
assert(last_block_inst<MAX_BLOCK_INST);
block_storage[last_block_inst++] = new_block;
}
//

block &get_block_inst(inrt id)

244

for(int i=0Q; i<last_block_inst; ++i) {
if(block_storagelil.get_id() == id) {
return block_storagelil;

}
}
printf("t11¢1t Bad id |%2d| in get_block_inst---block.cpp\n",id);
exit(116);
return block_storage[0];
}
/7
int get_block_id_at(int pos)
{
return block_storagel[pos].get_id();
}
/!
int get_last_block_inst(void)
{
return last_block_inst;
}
//
void block_inst_print(char *s)
{
printf(s);
for(int i=0; i<last_block_inst; ++i) {
printf("----- block inst %2d----—- \n",i);
block_storagel[il.print("");
getch();
}
puts("-- "),
}
//=========== == ==
//
//

245

F.7 CALVIN.CPP

//

//

// CALVIN.CPP

//

// 16 Jul 92

//

// This module is where most of the modules that make up the current

// configuration of Calvin. During developement, routines were created
// using this module. As they were completed, they were spawned off into
// their own modules. The current state of Calvin developement is in this
// module. :

//

//

//

// void print_bi_quene() -- Debuge routine

// int get_bi_from_signal() -- Get the Behave that drives the signal

// void init_suspect_queue() -- init queue

// void collect_bi_suspects() -- Original depth-1st collection routine

// void sus_depth_ist(int sr_id) -—+

// void collect_bi_suspects_2(int sr_id) —-+- Modified collection routine.
// Break when encounter a Behave that is already in the queue.
//

// These routines make up the suspect collection part of Calvin.

//

//

// void sim_signal_init(void) -~ init routine

// void sim_set_up() -- init routine

// int sensor_comp() -— Compare simulated sensors with outside sensors
// void load_out_val() -- Get outside sensor values

// void faultify_behave() -- "Break" the circuit.

// void diagnose() -- The Diagnose algorithm

// void run_exam() -- Run Calvin

// ==

//

#include <stdio.h>
#include <conio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

#include <queue.h>

#include "thesis.h"
#include “signal.hpp"
#include "behave.hpp"
#include "block.hpp”
#include "code.hpp"

#include "int.hpp"
#include "vhdl.hpp"

246

#include "comsen.hpp"
#include "stat.hpp"

//

Queus bi_queue; // Queue of Behave Instance suspects

//
// Debug function to print suspect BI queue
void print_bi_queue(void)

{
Queue temp_q = bi_queue;
puts("Queue of Eehavioral Instance suspects");
while(!temp_q.isEmpty()) {
cout << temp_q.get() << endl;
}
puts (" u) :
exit(0);
}
//

// Get BI id# of instance that drives specified signal
int get_bi_from_signal(int sr_id)

{
SignalRecord &sr_ptr = get_signal _rec(sr_id);
return sr_ptr.get_driver_bi();

}

//

// Flush out the suspect queues
void init_suspect_queue(void)
{
bi_queue.flush();
}

//
// Collect list of suspects from a possible discrepant signal
// Uses depth first approach

//int level = 0;

void collect_bi_suspects(int sr_id)

{
Integer *suspect_bi;

suspect_bi = new Integer(get_bi_from_signal(sr_id));

// Make sure we’re not at the top (command level)

if (suspect_bi->value() !'= COMMAND_SR) {
bi_queue.put(*suspect_bi);

// Recurse upstream from behave instance
Behave &bi_ptr = get_behave_inst(suspect_bi->value());
for(int i=0; i<bi_ptr.get_input_count(};++i) {
collect_bi_suspects(bi_ptr.get_input(i));
inc_stat (NO_SUSPECTS);

247

}

}
else {
// puts("Reached command level");
}
}
//
void sus_depth_ist(int sr_id)
{
Integer *suspect_bi;
suspect_bi = new Integer(get_bi_from_signal(sr_id));
// Make sure we’re not at the top (command level)
if(suspect_bi->value() != COMMAND_SR) {
// Make sure suspect not in queue already
if(!is_behave_marked(suspect_bi->value())) {
mark_behave(suspect_bi->value());
bi_queue.prt(*suspect_bi);
// Recurse upstream from behave instance
Behave &bi_ptr = get_behave_inst(suspect_bi->value());
for(int i=0; i<bi_ptr.get_input_count();++i) {
sus_depth_1st(bi_ptr.get_input(i));
inc_stat (NO_SUSPECTS);
}
}
}
else {
// puts("Réached command level");
}
}

void collect_bi_suspects_2(int sr_id)

{
flush_behave_mark();
init_suspect_gqueue();
sus_depth_1st(sr_id);
}
/7
void sim_signal_init(void)
{
process_init();
vhdl_main_loop();
}

248

//
void sim_set_up(

int ‘*in_val,

int in_val_last)

for(int i=0;i<in_val last;++i) {
post_signal(0,get_command(i),*(in_val+i));
}
}

//
// Compare simulated values (out_val) with recorded (rec_val)
// Return TRUE if same, FALSE if not
int sensor_comp(
int *out_val,
int *rec_val,
. int out_val_last)

for(int i=0;i<out_val_last;++i) {
if(out_vall[i] != rec_vallil) {
return FALSE;
}
}
return TRUE;
}

//
void load_out_val(

int *out_val,

int out_val_last)

for(int i=0;i<out_val_last;++i) {
SignalRecord si_ptr = get_signal_rec(get_sensor(i));
*(out_val+i) = si_ptr.get_cval();
}
}
//

void faultify_behave(
int bi_id,
int *in_val,
int in_val_last,
int *out_val,
int out_val_last,
int #*rec_val)

Behave &bi_ptr = get_behave_inst(bi_id);
if(is_flag_set (PRINT_HYPO)) {
printf("For %2d, we have %d bodies.\n",
bi_id, bi_ptr.get_code_count());
}
for(int i=1;i<bi_ptr.get_code_count(); ++i) {
if(is_flag_set (PRINT_HYPO)) {
printf("Selecting fault condition #%d\n",i);

249

}
// Hypothesize error
bi_ptr.set_code_select(i);
inc_stat (NO_HYPO_CHECKED);
// Re-simulate
sim_signal_init();
sim_set_up(in_val,in_val_last);
vhdl_main_loop();
load_out_val(out_val,out_val_last);
// Compare outputs
if(sensor_comp(out_val,rec_val,out_val_last)) {
if (is_flag_set (PRINT_TRIV)) {
printf£(">>>>>> Found a Suspect: %s at %d <<<<<<\n",
(get_block_inst(bi_ptr.get_block_id()).hyp_str_get(i)),
bi_id);
}
else {
printf("%s at %d: Suspect\n",
(get_block_inst(bi_ptr.get_block_id()).hyp_str_get(i)),
bi_id);
}
inc_stat (NO_FAULTS_FOUND);
}
else { ‘
if (is_flag_set (PRINT_HYPO)) {
printf("Ruled out hypothesis %d\n",i);
}
}
// Clear fault
bi_ptr.set_code_select(0);

}
//
void diagnose(
int =*in_val,
int in_val_last,
int =*out_val,
int out_val_last,
int *rec_val)

int i;
int found_problem = FALSE;
// Set up commands

sim_set_up(in_val,in_val_last);
vhdl_main_loop();

// Get simulated values
load_out_val(out_val,out_val_last);

250

if(is_flag_set(PRINT_1SIM)) {
puts("Correct operation results:");
for(int j=0;j<out_val_last;++j) {
printf("%2d: Signal #%2d = %2d\n",j,
get_sensor(j),out_vall[jl);

}

// Check for problems
for(i=0;i<out_val_last;++i) {
if(out_vallilt=rec_vallil) {
found_problem = TRUE;
if(is_flag_set (PRIFT_TRIV)) {
printf("We have a problem at sensor #%2d (Sigmal %03d):%2d !'= %2d\n",
i,get_sensor(i), out_vallil,rec_vallil);
}
else {
printf ("###)3d###\n" ,get_sensor(i));
}

if(is_flag_set (COLLECT__2)){
collect_bi_suspects_2(get_sensor(i));
}
else {
collect_bi_suspects(get_sensor(i));
}
if(is_flag_set (PRINT_SUSP)) {
print_bi_queue();
}
while(!'bi_queue.isEmpty()) {
faultify_behave(
((Integer &)bi_queune.get()).value(),
in_val,in_val_last,
out_val,out_val_last,rec_val);

}

if (is_flag_set(INSERT_BRK)) {
vreak;

}

}

// 1f no problems found, state so
if(!found_problem) {
puts("No problems found");
}
}
//-- -
void run_exam(void)
{
int in_val [MAX_COMMANDS],
out_val [MAX_SENSORS],

251

rec_val[MAX_SENSORS];
int i;
int’ in_last
int out_last

get_last_command();
get_last_sensor();

// Get circuit to steady state
sim_signal_init();

if(G_con_flag) {
printf("Enter values for the %d command signals:\n",in_last);
for(i=0;i<in_last;++i) {
printf("Command Js:",get_signal_rec(get_command(i)).get_name());
scanf ("%d",&(in_vallil));
}

printf("Enter values for the %d sensor signals:\n",out_last);
for(i=0;i<out_last;++i) {
printf("Sensor %s:",get_signal_rec(get_sensor(i)).get_name());
scanf ("%d",&(rec_vallil));

}
}
else {
if(is_flag_set (PRINT_TRIV)) {
puts("Getting commands,sensors");
}
for(i=0;i<in_last;++i) {
fscanf(confile,"%d",&(in_vallil));
if(is_flag_set(PRINT_TRIV)) {
printf("Command %s: %d\n",get_signal_rec(get_command(i)).get_name(),
in_vallil);
}
}
for(i=0;i<out_last;++i) {
fscanf(confile,"%d",&(rec_vall[il));
if(is_clag_set(PRINT_TRIV)) {
printf("Sensor %s: %d\n",get_signal_rec(get_sensor(i)).get_name(),
rec_valli]);
}
}
}
diagnose(in_val,in_last,out_val,out_last,rec_val);
}
//========z======z======z=== ==z===== z== Z=zzz=z==========z====

252

F.8 CODE.HPP

//

//

// CODE.HPP

//

// Code block class
//

// 16 July 1992

//
#ifndef __CODE_HPP__
#define __CODE_HPP__
#include "mcode.hpp"

#define MAX_CODE_LEN 40 // Max length of op codes
#define MAX_CODE_BLOCKS 40 // Max number of code blocks

class Code {

public:
Code(void);
Code(int new_id);
int get_id(void); // Return ID for code
void add_mcode(MCode new_code); // Add mcode to code object
void execute(int bi_no); // Execute Code block
void print(char *s); // Print code description
int get_code_blk_len(void); // Return length of code
MCode get_mcode_at(int pos); // Get mcode from code block
private:
int id; // Code id number
MCode code_blk[MAX_CODE_LEN]; // MCode storage
int last_code_no; // Last MCode
};
//

// Code block storage management routines

void reset_code_block(void);

void add_code_block(Code &new_code);
Code &get_code_block(int id);

void code_block_print(char *s);

//

// Execution stack routines

void value_reset(void);
void value_push(int value);
int value_pop{void);

//
#endif

253

F.9 CODE.CPP

//

//

// CODE.CPP

//

// Code block class
//

// 16 July 1992

//
#include <stdio.h>

#include <conio.h>

#include <stdlib.h>
#include <assert.h>

#include "code.hpp"
#include <stacks.h>

typedef BI_StackAsVector<int> intStack;

void Code::execute(int bi_no)

{
int code_pc = 6; // mcode PC
int not_done = TRUE;
// printf("Code::Execute: Behave #%2d\n",bi_no);
value_reset();
while(not_done) {
not_done = ((code_blk[code_pcl).execute(bi_no));
code_pc+t; :
}
}
//

typedef BI_StackAsVector<int> intStack;
intStack value_stack;

/* Clear any remaining values on value stack */
void value_reset(void)

{
while(!value_stack.isEmpty()) {
value_stack.pop();
}
}
void value_push(int value)
{
value_stack.push(value);
}
int value_pop(void)
{

return value_stack.pop();

254

}

//

//
// Storage for Code blocks

static Code code_storage[MAX_CODE_BLOCKS];
static int 1last_code_block;

void reset_code_block(void)

{
last_code_block = 0;
}

void add_code_block(Code &new_code)

{
assert{last_code_block<MAX_CODE_BLOCKS);
code_storage[last_code_block++] = new_code;

}
Code &get_code_block(int id)
{
for(int i=0; i<last_code_block; ++i) {
i1(code_storagel[il.get_id() == id) {
return code_storagel[il;
}
}
puts("tt111t Bad id in get_code_block-—~code.cpp");
exit(119);
return code_storage[0];
}
void code_block_print(char *s)
{
printf(s);
for(int i=0; i<last_code_block; ++i) {
printf("—---~ Code block %2d----- \n",i);
code_storage[i] .print("");
getch();
}
puts(" u) ;
}
//=====_ - I+ ==s=== ittt -ttt 1+
Code: :Code(void)
{
id = ~-1;
last_code_no = 0;
}

255

//
Code: :Code(int new_id)
{
id = new_id;
last_code_no = 0;

}
//
int Code::get_id(void)
{
return id;
}
//
void Code::add_mcode(MCode new_code)
{
assert(last_code_no<MAX_CODE_LEN);
code_blk[last_code_no++] = new_code;
}
//
void Code: :print(char #*s)
{
printt(s);
printf("For Code_block %2d, MCodes are:\n",id);
for(int i=0;i<last_code_no;++i) {
printf("%2d] ",i);
code_blk[i].print();
Puts("") ;
}
}
//
int Code::get_code_blk_len(void)
{
return last_code_no;
}
//
MCode Code::get_mcode_at(int pos)
{
return code_blk[pos];
}
//
//=========z====z=s=====zs=s========z==== s======3=s==s=ssssszsssssss

256

F.10 COMSEN.HPP

//
//
// COMSEN.HPP

//

// Bandle Command and sensor lists
// 16 jul 92

//
//
//

#define MAX_COMMANDS 20 // Max number of commands (system inputs)
#define MAX_SENSORS 20 // Max number of sensors (system outputs)

#define COMMAND_SR -1 // Signal is driven by a Command
#define SENSOR_SR -2 // Signal drives a sensor

//
void reset_commands{(void); // Initialize

void add_command(int signal_id); // Add new command to list
int get_command(int command_no); // Get command

int get_last_command(void); // Get the last command in the list
void reset_sensors(void); // Initialize

void add_sensor(int signal_id); // Add new sensor to list

int get_sensor(int sensor_no); // Get sensor

int get_last_sensor(void); // Get the last sensor in the list
//

257

F.11 COMSEN.CPP

//
//
// COMSER.CPP

//

// Handle Command and sensor lists
// 16 jul 92

//
//

#include <assert.h>

#include "comsen.hpp"

//

// Storage for Commands

static int commands[MAX_COMMAKDS];
static int last_command;

// Storage for sensors

static int sensors[MAX_SENSORS];
static int last_sensor;

//
void reset_commands(void)
{
last_command = 0;
}
void add_command(int signal_id)
{
assert(last_command < MAX_COMMANDS);
commands [last_command++] = signal_id;
}
int get_command(int command_no)
{
assert ((command_no>=0) && {command_no<last_command));
return commands[command_no];
}
int get_last_command(void)
{
return last_command;
}
//----
void reset_sensors(void)
{
last_sensor = 0;
}

258

void add_sensor(int signal_id)

{
assert(ldst_sensor < MAX_SENSORS);
sensors [last_sensor++] = signal_id;
}
int get_sensor(int sensor_no)
{
assert({sensor_no>=0) && (sensor_no<last_sensor));
return sensors[sensor_nol;
}
int get_last_sensor(void)
{
return last_sensor;
}
//

259

F.12 INT.HPP

//

// INT.HPP

//

// Integer Class - for IDs

//

// This object puts a shell around an integer. It is required

// so that integers can be used with the Borland container library
//

//

#ifndef __INT_HPP__

#define __INT_HPP 1

#include <object.h>
//
#define IntegerClass 111
class Integer : public Object {
public:

Integer(int new_data = 0) {

data = new_data;
}

int value(void) { return data; }

virtual hashValueType hashValue() const {
return data;

}

virtual int isEqual(const Object& otherGbj) const {
return data == ((Integer&) otherObj).data;
}

virtual int isLessThan(const Object& otherObj) const {
return data < ((Integer &) otherObj).data;
}

virtual classType isA() const {return IntegerClass;}
virtual char *name0f() const {return "Integer";}

virtual void printOn(ostream& coutt) comst {
coutt << "Int: " << data;
}
private:
int data;
I
//
#endif

260

F.13 MAIN.CPP

//

//

// MAIN.CPP - main function aund supporting routines

// ‘

// 24 Aug 92

//

// This is the - in module of Calvin. This module handles initializing’
// Calvin. The VHDL code is the parsed. Control is then handed

// to the diagnostic moduiem CALVIN.CPP.

//
// .
#define __HAIK_CPP__

#include <stdio.h>
#include <conio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

#include "thesis.h"
#include "vhdl.hpp"
#include "stat.hpp"

#define ERR_STR_LEN 128 // Length of error string argument parsing

//FILE #*infile; // input file for source code
//FILE *confile; // input file for commands
//int G_code; // Code flag for output options

//
// PRINT_TRIV -

/7 Print out headings,etc.
// PRINT_HYPO - T.CPP

// "selecting fault condition %d"

// “Ruied out hypothesis %d"

// "For /d, we have %d bodies"

// PRINT_COMM - UV.LEX

// Print out comments

// PRINT_1SIM - T.CPP

// print out results from first simulation
// PRINT_VE"" - VHDL.CPP

// many

// PRIKT_SUSP - T.CPP

// print list of suspects after collect_bi_suspects()

// INSERT_BRK - T.cpp

// break inserted as soon as error found and diagnosed

// COLLECT__2 - T.cpp '

// replace collect_bi_suspects() with collect_bi_suspects2()

261

int flags[MAX_FLAG]; // System flags set by command line

int is_flag_set(int flag_no)

{
return(flags[flag_nol);
}
void set_flag(char *flag _str)
{
for(int i=0;i<MAX_FLAG;++i) {
switch(*(flag_str+i)) {
case ’\0°’:
yyerror("Missing Flag on command line");
exit(99);
case ’'1’:
flags[i] = 1;
break;
case '0’:
flags{il = 0;
break;
default:
yyerror("Illegal flag on command line");
exit(99);
}
}
}
//--
void print_system_flags(void)
{
puts("System flag status:");
printf("PRINT_TRIV: Y%d\n", flags[PRINT_TRIV]);
printf("PRINT_HYPO: %d\n", flags[PRINT_EYPO]);
printf("PRINT_COMM: 7%d\n", flags[PRINT_COMM]);
printf("PRINT_1SIM: %d\n", flags[PRINT_1SIM]);
printf("PRINT_VHDL: Yd\n", flags[PRINT_VHDL]);
printf("PRINT_SUSP: ¥%d\n", flags[PRINT_SUSP]);
printf("INSERT_BRK: %d\n", flags[INSERT_BRK]);
printf("COLLECT__2: %d\n", flags[COLLECT__2]);
puts("-~—=——m—— e ")
}
// __

void parse_code_flag(int argc, char **argv)
{

char *file_name;

char err_str[ERR_STR_LEN];

if(arge < 2) {
puts("Usage:");
puts(" CALVIN ffff1fff vhdl_file input_file\n");
puts("where:
puts(" frfffLfef - Calvin flags (0/1)");

262

puts(" vhdl_file - VHDL source code file");

puts(" input_file - Optional input file for in/out values\n");
puts("Flags:");
puts(" 0 - Print trivia");
puts(" 1 - Print hypotheses");
puts(" 2 - Print commands™);
puts(" 3 - Print results of first simulation");
puts(" 4 - Print VHDL");
puts(" 5 - Print suspects");
puts(" 6 - Insert breakpoint");
puts(" 7 - Use Collection");
exit(111);
}
else {
set_flag(*(argv+1));
}

if(is_flag_set (PRINT_TRIV)) {
print_system_flags();
}
}
//

void parse_source_file(int argc, char **argv)
{

char *file_name;

char err_str[ERR_STR_LEN];

if(arge < 3) {
puts("Source file not found; using \"ttt\"");

file_name = "ttt";
}
else {
file_name = *(argv+2);
}
if((infile=fopen(file_name,"r")) == KULL) {
sprintf(err_str,"Cannot open source file \"%s\"", file_name);
yyerror(err_str);
exit(112);
}
} _
//--- e

void parse_input_file(int argc, char *#*argv)
{

char *file_name;

char err_str[ERR_STR_LEN];

if(arge < 4) {
puts("input file not found; using \'"con\"");
file_name = "con";
G_con_flag = TRUE;

263

return;

}

else {
file_name = *(argv+3);
G_con_flag = FALSE;

}

if((confile=fopen(file_name,"r")) == NULL) {
sprintf(err_str,"Cannot open source file \"%s\"", file_name);
yyerror(err_str);
exit(113);

}

// Determine number of inputs lines to process

if (fscanf(confile,"%d" ,&G_no_inputs) !'= 1) {
yyerror("Syntax error while reading confile header");
exit(114);

}

// Eat CRLF at end of line

fgets(err_str, ERR_STR_LEN, confile);

}
//---
void main(int argc, char **argv)
{
puts("VHDL Diagnostic System");
init_sim();
parse_code_flag(argc,argv);
parse_source_file(argc,argv);
parse_input_file(argc,argv);
yyparse();
if(G_con_flag) {
reset_stats();
run_exam();
print_stats();
if(is_flag_set(PRINT_TRIV)) {
puts("===========:=END:0F:RUN:====:=:==:=:====:==")'
}
}
else {
for(int i=0; i<G_no_inputs; ++i) {
reset_stats();
run_exam();
print_stats();
if(is_flag_set(PRINT_TRIV)) {
puts("===::::::::::END:OF:RUN::::::::::::::::::::“),
}
}
}
puts("El Fin.");
}
[/ e e e

264

F.14 MCODE.HPP

//

//

// MCODE.HPP

//

// Microcode class

//

// Handle execution of individual mcodes.
// 16 July 1992

//
#ifndef __MCODE_HPP__
#define __MCODE_HPP__
/7

#define MAX_STORE_LEN 20 // Humber of temp store locations
// MCodes implemented

#define M_NULL -1 // Null opcode

#define M_GET -2 // Get signal (signal #)
#define M_POST -3 // Post signal (signal #, value, delta time)
#define M_PUSH -4 // Push??

#define M_NOT -5 // NOT (value)

#tdefine M_AND -6 // ARD (valuel, value2)
#define M_OR -7 // OR (valuel, value2)
#define M_XOR -8 // XOR (valuel, value2)
#define M_END -9 // End execution

#define M_NAND -10 // NAND (valuel, value2)
#define M_NOR -11 // KANKD (valuel, value2)

#define M_POP -12 // Pop (and discard) value on top of stack
#define M_STORE -13 // Store (addr) ~- Place TOS in temp store
#define M_RETRV -14 // Retrieve (addr) ~- Place value from store on TOS

class MCode {

public:
MCode(void) ; // Create null microcode
MCode(int new_op); // Create new microcode
int execute(int bi_no); // Execute the opcode
void print(void); // print translation of opcode
int get_op_code(void); // Return mcode op code

private:
int op_code;

I

//- ---

#endif

265

F.15 MCODE.CPP

//

//

// MCODE.CPP

//

// Microcode class

//

// 16 July 1992

//

// This module handle the microcode execution.
//
#include <stdio.h>

#include <conio.h>

#include <stdlib.h>
#include <assert.h>

#include “mcode.hpp"
#include "code.hpp"
#include "behave.hpp"
#include "signal.hpp"
#include "vhdl.hpp"

//
int exec_null(void);

int exec_get(int bi_no);
int exec_post(int bi_no);
int exec_push(void);

int exec_not(void);

int exec_and2(void);

int exec_or2(void);

int exec_xor2(void);

int exec_end(void);

int exec_pop(void);

int exec_store(void);

int -exec_retrieve(void);

//

// Temp store for values during code execution
int G_store[MAX_STORE_LEN];

//
MCode: :MCode(void)
{
op_code = M_NULL;
}
//-==mmmmmnm
MCode: :MCode(int new_op)
{
op_code = new_op;
}
// - -
MCode: :get_op_code(void)
{

266

}
//

return op_code;

int MCode::execute(int bi_no)

{

}
//

// printf("Executing for bi#%2d: “,bi_no);
// print();
// puts("");
switch(op_code) {
case M_NULL:

return exec_null();
case M_GET:

return exec_get(bi_no);
case M_POST:

return exec_post(bi_no);
case M_PUSH:

return exec_push();
case M_NOT:

return exec_not();
case M_AND:

return exec_and2();
case M_OR:

return exec_or2();
case M_XOR:

return exec_xor2();
case M_END:

return exec_end();
case M_POP:

return exec_pop();
case M_STORE:

return exec_store();
case M_RETRV:

return exec_retrieve();
default:

if (op_code >= 0) {

value_push(op_code);
return TRUE;

}

else {
printf("**++* Illegal opcode %2d !!!!!\n", op_code);
exit(122);

}

}
return FALSE;

void MCode::print(void)

{

switch(op_code) {
case M_NULL:
printf("M_NULL"),;

267

break;

case M_GET:
printf ("M_GET");
break;

case M_POST:
printf("M_POST");
break;

case M_PUSH:
printf ("M_PUSH");
break;

case M_NOT:
printf("M_NOT");
break;

case M_AND:
printf ("M_AND");
break;

case M_OR:
printf("M_OR");
break;

case M_XOR:
printf("M_XOR");
break;

case M_END:
printf ("M_END");
break;

case M_POP:
printf("M_POP");
break;

case M_STORE:
printf("M_STORE");
break;

case M_RETRV:
printf ("M_RETRV");
break;

default:
if(op_code >= 0) {

printf("Value: %2d",op_code);

}
else {
printf ("*Unknown*") ;
}
}
}
//-- -
//
int exec_null(void)
{
return TRUE;
}
int exec_get(int bi_no)
{

268

Behave &bi_ptr = get_behave_inst(bi_no);
int signal_offset = value_pop();

int signal_id = bi_ptr.get_input(sigral_offset);
SignalRecord &sr_ptr = get_signal_rec(signal_id);
int value = sr_ptr.get_cval();
value_push(value);
return TRUE;

}

int exec_post(int bi_no)

{
int time_offset = value_pop();
int value = value_pop();
int signal_offset = value_pop();
Behave &bi_ptr = get_behave_inst(bi_no);
int signal_id = bi_ptr.get_output(signal_offset);
SignalRecord &sr_ptr = get_signal rec(signal_id);
post_signal(get_current_time()+time_offset,sr_ptr.get_id(),value);
returrn TRUE;

}

int exec_push(void)

{
puts("!11¢t UNIMPLEMENTED OP CODE IN MCODE");
return FALSE;)

}

int exec_not(void)

{
int value = value_pop();
value_push(!value);
return TRUE;

})

int exec_and2(void)

{
int valuel = value_pop();
int value2 = value_pop();
value_push(valuel & value2);
return TRUE;

}

int exec_or2(void)

{
int valuel = value_pop();
int value2 = value_pop();
value_push(valuel | value2);
return TRUE;

}

int exec_xor2(void)

{

int valuel = value_pop();
int value2 = value_pop();

1

int value3 = ((valuel & !value2) | (!'valuel & value2));
value_push(value3);
return TRUE;

269

}

int exec_end(void)

{
return FALSE;

}

int exec_pop{(void)

{
value_pop();
return TRUE;

}

int exec_store(void)

{
int addr = value_pop();
assert(addr >= 0 && addr < MAX_STORE_LEN);
G_store[addr] = value_pop();
return TRUE;

}

int exec_retrieve(void)

{
int addr = value_pop();
assert(addr >= 0 && addr < MAX_STORE_LEN);
value_push(G_store[addr]);
return TRUE;

}

//

//

270

F.16 SIGNAL.HPP

1/
//
// SIGNAL.HPP

//

// Signal Record Class
//

// 16 July 1992

//

#define MAX_NAME_SIZE 10 // Max size of name
#define MAX_CONKS 10 // Max number of behaves the signal can drive

#define MAX_SIGNAL_REC 50 // Max number of signals in simulation

class SignalRecord {
public:
SignalRecord(void);
SignalRecord(
int new_id,
char *new_name,
int driver_bi_no);

get_id(void);
void print(char *s);
void add_conns(
int conns_id);
void get_conns(
int *last_conn_no,
int **conn_list);
void set_cval(int new_val)
int get_cval(void);
int get_driver_bi(void);

void set_driver_bi(
int new_driver);
char *get_name(void);
private:
int id;
char name[MAX_NAME_SIZE];
int cval;
int conns[MAX_CONKS];
int last_conn;
int driver_bi;

// Get id of signal
// Print signal description
// Add connection to signal

// Get a Behave object connected to signal

;// Set signal value

// Get signal’s value

// Get ID of Behave object that drives this
// signal

// Set driver Behave object for this signal.

// Return character name of this signal

// Integer name

// Character name

// Value of signal

// List of connections to signal (BI inputs)
// Last added conn + 1

// Which bi# drivers this signal

};

//= ----------- St s e e 1]
// Signal record storage management routines

void reset_signal_rec(void);

void add_signal_rec(SignalRecord &new_signal);

271

void mod_signal_rec(SignalRecord &mod_signal);
SignalRecord &get_signal_rec(int id);
void signal_rec_print{(char *s);

7 sess=== ==

272

F.17 SIGNAL.CPP

//

//

// SIGNAL.HPP

//

// Signal Record Class

//

// 16 July 1992

//

// This module defines routines for the signal class

//

#include <stdio.h>

#include <stdlib.h>
#include <assert.h>
#include <string.h>

#include "signal.hpp"

1/

// Storage for signal instance

static SignalRecord signal_storage[MAX_SIGNAL_REC];
static int last_signal_inst;

ettt
void reset_signal_rec{(void)
{

last_signal_inst = 0;

}

//
void add_signal_rec(SignalRecord &new_signal)

{
assert(last_signal_inst<MAX_SIGNAL_REC);
signal_storage[last_signal_inst++] = new_signal;

}

// - -
void mod_signal_rec(SignalRecord &mod_signal)
{
for(int i=0; i<last_signal_inst; ++i) {
if(signal_storage[i].get_id() == mod_signal.get_id()) {
signal _storageli] = mod_signal;
return;
}
})
puts(" ¢!ttt Bad id in mod_signal_rec---signal.cpp");
exit(120);

B . --
SignalRecord &get_signal_rec(int id)
{

273

for(int i=0; i<last_signal_inst; ++i) {
if(signal_storageli].get_id() == id) {
return signal_storagel[il;

}
}
puts("!t111! Bad id in get_signal _rec---signal.cpp");
exit(121);
return signal_storage[0]; // Get rid of "Need return" warning
}
//
void signal_rec_print(char *s)
{
printf(s);
for(int i=0; i<last_signal_inst; ++i) {
printf("Signal %2d: %03d ==> J)d\=n",1i,
signal_storagel[il.get_id(),
signal_storagel[il].get_cval());
}
puts(" ");
}
/ -
SignalRecord::SignalRecord(void)
{
id = -1;
strcpy(name, "ANON");
driver_bi = -1;
last_conn = 0;
cval = 0;
}
//

SignalRecord::SignalRecoxd(
int new_id,
char *new_name,
int driver_bi_no)

{
id = new_id;
strncpy(name,new_name ,MAX_NAME_SIZE);
name [MAX_NAME_SIZE] = ’\0’;
driver_bi = driver_bi_no;
last_conn = 0;
cval = 0;
}
//-- --
int SignalRecord::get_id(void)
{
return id;
}
F e e
void SignalRecord::print(char #*s)
{
printf(s);

274

printf("Name: %10s (%2d) Driver: %2d Value: %2d\n",

name, id,driver_bi,cval);
puts("Connected to:");
for(int i=0;i<last_conn;++i) {
printf("%2d| --> %2d\n",i,conns[il);
}
}

//
char * SignalRecord::get_name(void)
{

return name;

}

//
void SignalRecord::add_conns(int conns_id)

{
assert(last_conn<MAX_CONNS ;

conns[last_conn++] = conns_id;

}
//
void SignalRecord::get_conns(int *last_conn_no, irt **comn_list)
{
*last_conn_no = last_coan;
*conn_list = counns;
}
//

void SignalRecord::set_cval(int new_val)
{

cval = new_val;
}
/7

int SignalRecord::get_cval(void)
{

v eturn cval;

}

//
int SignalRecord::get_driver_bi(void)
{

return driver_bi;

}

// -
void SignalRecord::set_driver_bi(int new_driver)
{

driver_bi = new_driver;

275

F.18 STAT.HPP

//

//

// STAT.HPP - Statistic collection routines
//

// 26 Aug 92

//
//
//
// Available statistics
#define NO_SUSPECTS 0
#define NO_BYPO_CHECKED 1
#define NO_FAULTS_FOUND 2
#define BO_POST_SIG 3
#define RO_UPDATE 4
##define KRO_VHDL_SIM 5

#define MAX_STAT 6

void reset_stats(void);
void inc_stat(int stat_name);
void print_stats(void);

276

F.19 STAT.CPP

//

//

// STAT.CPP - Statistic collection routines
//

// 26 Aug 92

//
//
//
#include <stdio.h>
#include <comnio.h>
#include “thesis.h"
#include "stat.hpp"

// collection variables
static int stats[MAX_STAT];

// Reset stat variables
void reset_stats(void)
{
for(int i=0; i<MAX_STAT; ++i) {
stats[i] = 0;
}
}

// increment stat variable
void inc_stat(int stat_name)
{

stats[stat_name]++;

}

// print stats
void print_stats(void)
{
it (is_flag_set (PRINT_TRIV)) {

puts ("----me—eeeeee Statistics ———-——=-=-=-n ");
printf ("Number of suspects generated —---—- %3d\n",
printf ("Number of hypotheses checked —---- %3d\n",
printf (“Number of faults found -------—-—- %3d\n",
printf("Number of posted signals —--—------ %3d\n",
printf("Number of behave updates —-—------ %3d\n",
printf("Number of simulations done ------- %3d\n",
puts (" "y,
}
else {
puts(" _____ u)'

printf("%3d #suspects\n", stats[N0_SUSPECTS]);

printf("%3d #hypos\n", stats [NO_HYPO_CHECKED]);
printf("%3d #faults\n", stats [NO_FAULTS_FOUND]);

printf("%3d #posts\n", stats[NO_POST_SIG]);

277

stats [NO_SUSPECTS]);
stats [NO_HYPO_CHECKED]);
stats [NO_FAULTS_FOUND]);
stats [NO_POST_SIG]);
stats [NO_UPDATE]);

stats [NO_VHDL_SIM]);

printf("%3d #updates\n", stats{NO_UPDATE]);
printf("%3d #sims\n", stats [NO_VHEDL_SIM]);
}

278

F.20 THESIS.H

/*
VHDL PARSER

File: THESIS.H
Date: 2 July 1992

Catch-all file for all modules

*/

/* */
#ifndef __THESIS_H__

#define __THESIS_H .

#define CURRENT_LIST (void *)1

#define ERROR -32767
#define TRUE 1
#define FALSE (o}

// Code title describing correctly operating code blocks
#define CORRECT_CODE_TITLE "Correct operation’

// Maximum interface parameters for Behave objects

#define MAX_IN 10 // Maximum number of inputs

#define MAX_OUT 10 // Maximum number of outputs

/* */
int yyerror(char *s);

int yylex(void);

int yyparse(void);

void run_exam(void);
int is_flag_set(int flag_no);

//void *alloca();
/* - - */
// System flags

#define PRINT_TRIV 0 // Print out headings,etc.

#define PRINT_HYPO 1 // Print out hypothesis numbers

#define PRINT_COMM 2 // Print comment lines during parse

#define PRINT_1SIM 3 // Print out 1st simulation resuts (correct operation)
#define PRINT_VHDL 4 // Print out VHDL output during simulation

#define PRINT_SUSP 5 // Print possible-suspect-list

#define INSERT_BRK 6 // Insert break after one error found

#define COLLECT__2 7 // Use 2nd collect_bi_suspects()

#define MAX_FLAG 8

/* */
// Global variables

279

#include <stdio.h>
#ifdef __MAIN_CPP__

FILE *infile; // input file for source code
FILE *confile; // input file for commands
int G_code; // Code flag for output options

int G.con_flag; // Flag to indicate commands come from console
int G_no_inputs;// Number of command lines to process
#else

extern FILE *infile; // input file for source code
extern FILE *confile; // input file for commands
extern int G_code; // Code flag for output options

extern int G_con_flag; // Flag to indicate commands come from console
extern int G_no_inputs;// Number of command lines to process

#endif

/* */
#endif

280

F.21 VHDL.HPP
//

//

// VHDL.HPP

//

// VHDL simulator code
//

// 17 July 1992

//

// Header file for VHDL
//

simulator module

#ifndef __VHDL_HPP__
#define __VHDL_HPP__

//
#define 0K 0
#define QUEUE_END 1
//

void init_sim(void);

void update_behave(
int &behave_id,
void »args);

void post_signal(

int time,
int signal_id,
int new_val);

int get_top_time(void);

// Init simulator
// Simulate a behavior object

// Post an activation record to the queue.
// This function called during behave object
// simulation

// Get time of next event in the quemne

int get_current_time(void);// Get the current simulation time
int process_low_time(void);// Process all activation records with the

int process_init(void);

vhdl_main_loop(void);

// current simulation time

// Execute each behavior object once in
// order to start the simulation object
// VHDL main loop - called to run the
// VHDL simulation

//--
#endif

281

F.22 VHDL.CPP

//
//
/!
//
//
//
//
//

VHDL.CPP
VHDL simulator code

17 July 1992

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#include <sets.h>

#include "signal.hpp"
#include "behave. hpp"
#include "block.hpp"
#include "code.hpp"

#include "ar.hpp"

#include "vhdl.hpp"
#include "stat.hpp”
#include "queue.hpp"

typedef BI_SetAsVector<int> IntSet;

//

static int current_time;

//

void init_sim(void)

{

}

current_time = 0;

reset_behave_inst();
reset_signal_rec();
reset_code_block();
reset_block_inst();

static void update_behave(int &behave_id, void *args)

{

inc_stat (NO_UPDATE);

if(is_flag_set(PRINT_VHDL)) {
printf("Updating behave %03d\n",behave_id);

}

// Get behavior instance to update
Behave &bi = get_behave_inst(behave_id);

// Get proper code block for behavior
block &block_ptr = get_block_inst(bi.get_block_id());

282

Code &code_ptr = set_code_block(block_ptr.get_code(bi.get_current_select()));
// And execute it
code_ptr.execute(behave_id);
// Get rid of Borland warning (do nothing)
((int*) (args))++;
}
//
void post_signal(
int time,
int signal_id,
int new_val)

inc_stat(NO_POST_SIG);
if(is_flag_set(PRINT_VHDL)) {
printf("Posting signal %03d: new value=Yd at %d\n",
signal_id,new_val,time);
}
ActiveRecord new_ar = ActiveRecord(time,signal_id,new_val);
put_queue(new_ar);

}

//
int get_top_time(void)
{

if(empty_queue()) {
return QUEUE_ERND;
}
ActiveRecord front_ar = front_queune();
return front_ar.get_time();

}
//

int get_current_time(void)
{

return current_time;
}
//
int process_low_time(void)
{

IntSet behav_set;

int *conns_ptr;

int last_conn_no;

int new_time;

if((new_time=get_top_time()) == QUEUE_END) {
return QUEUE_END;

}

if(is_flag_set(PRINT_VHDL)) {
printf(“The new time is %d\n", new_time);

283

}

while(new_time == get_top_time()) {
ActiveRecord next_ar = get_queue();
SignalRecord &sr_ptr = get_signal_rec(next_ar.get_sr_ptr());

if(sr_ptr.get_cval() !'= next_ar.get_value()) {
sr_ptr.set_cval(next_ar.get_value());
if(is_flag_set(PRINT_VEDL)) {
printf("Signal %03d: <-- %d\n", sr_ptr.get_id(), sr_ptr.get_cval());
}
// Collect conns into one container
sr_ptr.get_conns(&last_conn_no, &conns_ptr);
for(int i=0;i<last_conn_no;++i) {
if(is_flag_set(PRINT_VHDL)) {
printf("will update %03d\n",conns_ptrl[i]);
}
behav_set.add(conns_ptr[il);
}
}
}
// Update master time
current_time = new_time;

behav_set.forEach(&update_behave, "");
return OK;

int process_init(void)
{

int behave_id_no;

for(int i=0; i<get_last_behave_inst(); ++i) {
behave_id_no = get_behave_id_at(i);
update_behave(behave_id_no,"");
}
return OK;
}
//
vhdl_main_loop(void)
{

int not_done = TRUE;
int result;

inc_stat (NO_VHDL_SIM);
while(not_done){
switch(process_low_time()) {
case OK:
break;
case QUEUE_END:
not_done = FALSE;

284

break;
default:

285

Appendix G. Verification of Example VHDL Source Code

G.1 Introduction

The example source files in Appendix B were verified using the Zycad VHDL system. Because

of some limitations in Calvin’s VHDL simulator, some modifications were made. These include:

e Libraries were not implemented in Calvin. The “work.” and references to the “work” library

were added.
o Sensitivity lists were not implemented. These lists were added to the process statements.

e Specific time units were not implemented. In Calvin, the times specified in the after clauses

do not have any units. The unit “ns” was added for the Zycad runs.

o At this time Calvin does not allow signal assignments in the structural descriptions. In some
of the circuits internal signals need to be brought out as outputs. Calvin allows the signals
in the parameter lists to be used as internal signals. Since this is not allowed by the VHDL
standard, new signals were created for the Zycad runs. These can be identified by the letter

‘0" at the end of the identifier (as in i7100).

In this appendix are the modified source files. These were followed by the signal values as
reported by Zycad. For the full-adder, ALU without probes, and ALU with probes, the inputs are

the same as the those in the figures in section 4.1.1.

286

G.2 Zycad Source Files

G.2.1 Full-Adder

-- One-bit full-adder
-- Consists of 2 half-adders and an OR gate
== X+Y+ Cin =2 + Cout

-- This full-adder is used in the four-bit adder

-------- OR Gate ————-——-—-
entity i015 is
port(
i011: in Bit;
1012: in bit;
i013: out bit
);

end;

architecture i025 of i015 is
begin
process (i011, i012)
begin
1013 <= i011 or i012 after 5 ns;
end process;
end 1025;

------ Half adder ———----—-
entity i010 is
port(
i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit
);

end;

architecture 1020 of i010 is
begin
process (i011,1012)
begin
1013 <= 1011 xor i012 after 5§ ns;
1014 <= i011 and i012 after 5 ns;
end process;
end i020;

287

entity i050 is

port(
i051,i052,i053:in bit;
i054,i055:0ut bit

);

end i050;

architecture 1060 of i050 is

signal i090:bit;
signal i091:bit;
signal i092:bit;
component i010
port(
i011: in Bit;
1012: in bit;
1013: out bit;
1014: out bit
);
end couponent;
component i030
port(
i011,i012:in bit;
i013:o0ut bit
);

end component;

begin
1080:i010
port map(
i011 => i0b1,
1012 => i052,
i013 => i090,
i014 => i091);

i081:i010
port map(
i011 => i090,
i012 => i053,
1013 => i0b4,
i014 => 1092);
i082:1030
port map(
i011 => i091,
i012 => 1092,
i013 => i055);

1t

——————— Circuit —==-v=-—--
configuration i099 of i060 is

288

for i060
for i080,i081:i010 use entity work.i010(i020);

end for;
for i082:i030 use entity work.i015(i025);

end for;
end for;
end;

289

G.2.2 ALU without Probes

—- Three-bit, Two-operation ALU
-~ Performs AND or OR function of 2 three-bit values

227120
2221720

—- If S=1, A241A0 AND B2B1BO
-- If S=0, A2A1A0 OR B2B1BO

-- This example has the probes inserted at the outputs
-- of the AND/OR functions commented out.

library work;
-------- OR Gate —————----
entity 1200 is
port(
1201: in Bit;
i202: in bit;
i203: out bit
);
end;
architecture i2909 of i200 is
begin
process (i201,i202)
begin
1203 <= 1201 or i202 after 5 ns;
end process;
end;

-------- AND Gate ————---
entity i100 is
port(
i101: in Bit;
1102: in bit;
i103: out bit
);
end;
architecture i199 of i100 is
begin
process (i101,1i102)
begin
1103 <= i101 and 1102 after 5 ns;
end process;
end;

-------- INVGate -————-——-
entity i300 is
port(

i301: in Bit;

i302: out bit

290

);

end;
architecture i399 of i300 is
begin
process (i301)
begin
i302 <= not i301 after 5 ns;
end process;
end;
entity i500 is
port(
i510 : in bit; -- A
iS11 : in bit; -—- A
ib12 : in bit; -~ A
i520 : in bit; - B
i521 : in bit; -- B
i622 : in bit; - B
i695 : in bit; -- s0
i8530 : out bit; —— Z
i531 : out bit; - 2

i532 : out bit - Z

== The following are the

commented-out probes

- i710 : out bit; -— YOAND
-- i711 : out bit; ~-- Y1AND
- i712 : out bit; -- Y1AND
- i810 : out bit; -- YOOR
- i811 : out bit; -— YiO0R
- i812 : out bit -- Y1OR
)3
end i500;
architecture i599 of i500 is
component 1100
port(i101,
i102 In Bit;
i103 out Bit);
end component;
component i200
port(i201,
1202 In Bit;
i203 out Bit);
end component;
component i300
port(i301 In Bit;

291

1302

end component;

signal

io00,
ioo0t,
ioii,
io21,

1003,1004,
1013,i014,
1023,i024

: bit;

Qut Bit);

== The commented-out probes have been replaced by
-- these internal signals

signal i710,i711,i712 : bit;
signal i810,1811,i812 : bit;

begin

-- Control line

i606:

i300 port

-- Bit 0

i601:
1602:
i603:
i604:
1605:

i100 port
i200 port
1100 port
1100 port
1200 port

-- Bit 1

i611:
i612:
i613:
i614:
i615:

1100 port
i200 port
1100 port
1100 port
1200 port

-- Bit 2

i621:
i622:
i623:
1624:
i625:

end;

i100 port
1200 port
i100 port
1100 port
i200 port

inverter
map(i301=>i595,

map(i101=>i510,
map(i201=>i510,
map(1101=>i710,
map(i101=>i810,
map(i201=>i003,

map(i101=>i511,
map(i201=>i511,
map(i101=>i711,
map(i101=>i811,
map(i201=>i013,

map(i101=>i512,
map(1201=>i512,
map(i101=>i712,
map(i101=>i812,
map(i201=>i023,

Circuit ----------

configuration i000
for i599
== AND gates
for i601,i603,i604:i100 use entity work.i100(i199);

end

for;

of i500 is

i302=>i000);

1102=>1520, i103=>i710);
i202=>1520, i203=>i810);
i102=>i000, i103=>i003);
1102=>i595, 1103=>i004);
i202=>i004, i203=>i530);

i102=>3i521, i103=>i711);
1202=>i521, i203=>i811);
i102=>31000, i103=>i013);
i102=>i595, i103=>i014);
i202=>i014, i203=>i531);

i102=>i522, i103=>i712);
i202=>3522, i203=>i812);
i102=>i000, 1103=>i023);
1102=>i595, 1103=>i024);
1202=>3024, i203=>i532);

292

for i611,1613,

end for;

for i621,i623,

end for;

-- OR gates

for i602,i605:

end for;

for i612,1615:

end for;

for i622,i625:

end for;

== INV gates
for 1i606:1300
end for;

end for;

end;

i614:1100 use entity work.i100(i199);

i1624:1100 use entity work.i100(i199);

i200 use entity work.i200(i299);

i200 use entity work.i200(i299);

1200 use entity work.i200(i299);

use entity work.i300(i399);

293

G.2.8 ALU with Probes

-- Three-bit, Two-operation ALU
-- Performs AND or OR function of 2 three-bit values

== If S=1, A2A1A0 AND B2B1BO
== If S=0, A2A1A0 OR B2B1BO

222120
222120

-- This example has the probes inserted at the outputs
-- of the AND/OR functions. These bring the results of
-- functions to sensors.

library work;

-------- OR Gate ———————-
entity i200 is
port(
i201: in Bit;
1202: in bit;
i203: out bit
);
end;
architecture i299 of i200 is
begin
process (i201,i202)
begin
1203 <= i201 or i202 after 5 ns;
end process;
end;

-------- AND Gate --—-————
entity i100 is
port(
i101: in Bit;
1102: in bit;
1103: out bit
);
end;
architecture 1199 of 1100 is
begin
process (i1101,i102)
begin
1103 <= i101 and i102 after 5 ns;
end process;
end;

-------- INVGate -———-==w-
entity i300 is
port(

294

both

i301: in Bit;
i302: out bit

)

end;

architecture i399 of i300 is

begin

process (i301)

begin

i302 <= not
end process;

end;

1301 after 5 ns;

entity i500 is

port(
i510
ib11
i512
i520
i521
1522
i595
i530
i531
1532

-- These output signals are the probes

i710
i711
i712
ig10
ig11
i812
);
end i500;

¢ in
:in
: in
:in
: in
: in
: in
: out
. out
: out

: out
: out
: out
: out
: out
. out

architecture i599

component i100

port(i101,
i102
1103

end component;

component i200

port(i201,
1202
i203

end component;

bit; --
bit; —-
bit; --
bit; -
bit; —-
bit; --
bit; -
bit; --
bit; —
bit; -

bit; -—-
bit; --
bit; —-
bit; —-
bit; -—-
bit --

of 1500

In
out

In
out

0 wew> > b

0

N NN

YOAND
Y1AND
Y1AND
YOOR
Yi0R
YiOR

is

Bit;
Bit);

Bit;
Bit);

295

component i300
port(i301

1302

end component;

signal

1000,
i001,
i011,
i021,

i003,1004,
i013,i014,
i023,i024

: bit;

In
Out

Bit;
Bit);

signal i7100,i7110,i7120,i8100,i8110,i8120 : bit;

begin
-- Control line inverter
1606: i300 port map(i301=>i595, i302=>i000);
-- Bit 0
i601: i100 port map(i101=>i510, 1102=>i520, i103=>i7100);
i602: i200 port map(i201=>i510, 1202=>i520, i203=>i8100);
i603: 1100 port map(i101=>i7100, i102=>i000, i103=>i003);
i604: 1100 port map(i101=>i8100, i1102=>i595, i103=>i004);
i605: 1200 port map(i201=>i003, i202=>i004, i203=>i530);
-- Bit 1
i611: i100 port map(i101=>i511, i102=>i521, i103=>iT7110);
i612: 1200 port map(i201=>i511, i202=>i521, i203=>i8110);
i613: 1100 port map(i101=>i7110, i102=>i000, i103=>i013);
i614: i100 port map(i101=>i8110, i102=>j595, i103=>i014);
i616: i200 port map(i201=>i013, i202=>i014, i203=>i531);
-- Bit 2
i621: 1100 port map(i101=>i512, i102=>i8522, i103=>i7120);
i622: i200 port map(i201=>i512, i202=>i522, i203=>i8120);
i623: 1100 port map(i101=>i7120, i1102=>i000, i103=>i023);
i624: i100 port map(i101=>i8120, 1102=>i595, i103=>i024);
i625: 1200 port map(i201=>i023, i202=>i024, i203=>i532);

i710 <= i7100;

i711 <= iT11o0;

i712 <= iT7120;

i810 <= i8100;

i811 <= i811o;

i812 <= i8120;

end;

------- Circuit -------——-

configuration i000 of i500 is

for i599

== AND gates

296

for
end

for
end

for
end

1601,1i603,1604:i100 use entity work.i100(i199);
for;

i611,1613,i614:i100 use entity work.i100(i199);
for;

i621,i623,i624:1100 use entity work.i100(i199);
for;

-- OR gates

for
end

for
end

for
end

i602,1605:i200 use entity work.i200(i299);
for;

i612,1615:1200 use entity work.i200(i299);
for;

i622,1625:i200 use entity work.i200(i209);
for;

-- INV gates

for
end

i606:1300 use entity work.i300(i399);
for;

end for;

end;

297

G.2.4 Four-Bit Adder

-- Four-bit Adder
-- Consists of 4 full-adders in cascade

—- X3X2X1X0 + Y3Y2Y1Y0 + Cin = Z322Z1Z0 + Cout

-------- OR Gate ——-———=---
library work;

entity 1015 is
port(
io11: in Bit;
i012: in bit;
i013: out bit
);

end;

architecture i025 of i015 is
begin '
process (i011,i012)
begin
i013 <= i011 or i012 after 5 ns;
end process;
end 1025;

------ Half adder -~—------
entity 1010 is
port(
i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit
);

end;

architecture i020 of i010 is
begin
process (i011, i012)
begin
i013 <= i011 xor i012 after 5 ns;
i014 <= i011 and i012 after 5 ns;
end process;
end 1020;

------ Full Adder --------
entity 1050 is
port(

298

i100 : in bit; -- Cin

ii110, -- X0
i111, -~ X1
i112, - X2
i113 : in bit; -- X3
i120, -- Y0
i121, -1
i122, -- Y2
i123 : in bit; -- Y3
1130, -- 20
i131, - 21
i132, - 22
i133 : out bit; -- 23
i140, -- couto
i141, -- coutl
i142 : out bit; -- cout2
i143 : out bit -- Cout

);

end;

architecture i060 of i050 is

signal i200,i201,i202:bit;
signal i210,i211,i212:bit;
signal i1220,i221,i222:bit;
signal i230,i231,i232:bit;

component i010
port(
i011: in Bit;
i012: in bit;
i013: out bit;
i014: out bit
);
end component;
component i030
" port(
i011,i012:in bit;
i013:o0ut bit
);

end component;

signal 11400, ii41o, il42o:

begin
-- Bit 0
i600:1010
port map(
i011 => i110,
i012 => i120,

bit;

299

i013
io14

nn
v Vv

1501:i010
port map(
1011 =>
1012 =>
1013 =>
i014 =>

i502:1030
port map(
io11 =>
1012 =>
i013 =>

Bit 1
i510:1010
port map(
io11 =>
i012 =>
i013 =>
i014 =>

i511:i010
port map(
io11 =>
i012 =>
i013 =>
1014 =>

i512:1030
port map(
io11 =>
i012 =>
1013 =>

-- Bit 2
i520:1010
port map(
io11 =>
i012 =>
i013 =>
i014 =>

1521:1010
port map{(
io11 =>
i012 =>
i013 =>
i014 =>

1200,
i201);

1200,
1100,
i130,
i202);

1202,
i201,
i1400);

i111,
i121,
i210,
i211);

i210,
11400,
i131,
i212);

1212,
1211,
ild1o0);

i112,
i122,
i220,
i221);

i220,
il4io,
1132,
1222);

300

1522:1030
port map(
i011 => 1222,
i012 => 1221,
i013 => 11420);
-- Bit 3
i530:1010
port map(
i011 => i113,
i012 => 1123,
1013 => 1230,
i014 => i231);

1

i631:i010
port map(
i011 => i230,
i012 => i142o0,
i013 => 1133,
1014 => i232);

i532:i030
port map(

i011 => i232,
i012 => 1231,
i013 => i143);

i140 <= i1400;

i141 <= i1410;

1142 <= i1420;

end;

------- Circuit ----------
configuration i099 of i050 is
for i060
for i600,i501:1010 use entity work.i010(i020);
end for;
for 1502:1030 use entity work.i015(i025);
end for;

for i510,i511:i010 use entity work.i010(i020);
end for;

for 1512:i1030 use entity work.i015(i025);

end for;

for i520,1521:i010 use entity work.i010(i020);
end for;
for i622:i1030 use entity work.i015(i025);

end for;

for i530,i531:i010 use entity work.i010(i020);

301

end for;
for i1632:i030 use entity work.i015(i025);
end for;
end for;
end;

302

G.3

i051
1052
1053
i054
i055

i051
i052
1063
i054
i055

i051
1052
1053
1054
1055

1051
i052
1053
1054
1055

1051
1052
i053
1054
1055

i051
i052
i053
i054
1055

i051
i052
i063
i054
i0556

i061
i052
i0s3
i054

Zycad Results

G.8.1 FULLADD.VHZ

lo)
Jo)
)O)
Jol
Dot

)1)
’O)
10)
)1,
)o’

)0)
)1)
)o)
li)
’0!

)1)
)1)
)o)
)o)
)1)

)0)
)o}
)1)
)1)
)0)

11)
)O’
’1)
Do’
’1’

0
’q?
rq?
102
’q?

’1)
311
Dll
)1}

303

1056 't

304

i510
i520
i511
is21
i512
1522
i595
i530
i5631

G.3.2 ALU.VHZ (without Probes)

111
)1)
11,
)1)
11)
’11
,o’
)1)
)1)
)1l

1512
i522
i595
i530
i531
is32

)0)
)1)
lol
’o)
)0)
)0’

306

i8956
ib10
i511
i512
i520
is21
1522
i530
ib31
i5832
i710
i810
i711
igs11
i712
ig12

i595
1510
i511
ib12
i520
is21
i522
1530
i531
1532
i710
ig810
i711
is11
i712
i812

i595
i510
i511
1512
i5620
is21
ib22
is30
i531
i532
i710
ig10
i711
is11
i712

G.3.8 ALUIL VHZ (with Probes)

)o’
)1’
11)
)1)
)1)
)1)
)1)
)1)
)1)
)1)
)1)
)1!
,1)
}1’
)1)
,1)

)o’
l1)
)1’
)1)
)o’
)1)
Dl)
!0)
,1’
,1,
)o)
)1)
’1,
)1,
’1]
)1)

31)
)1)
}1’
)1’
lol
)1)
)1)
)1)
51)
,13
}o)
ll}
Ill
,1,
,ll

307

ig12

1598
1510
i511
is12
i520
is21
i522
1530
i531
i532
i710
i810
i711
is11
i712
i812

ib95
i510
i511
i512
i520
i521
1522
i530
1531
i532
i710
ig810
i711
i811
i712
ig12

)1)

)1)
)1'
)o)
10)
’0)
)1)
11)
)1)
)1)
)1)
)o)
)1’
)o)
)1’
)o)
111

)o)
31)
’o)
IOI
lo)
’1)
)1)
)0)
)o)
)0’
)0’
)1)
)0’
111
’o’
)1)

308

i100
i110
i111
i112
i113
i120
i121
1122
i123
i130
i131
1132
1133
1140
i141
1142
i143

i100
i110
i111
i112
i113
i120
i121
1122
i123
1130
i131
i132
i133
i140
i141
1142
i143

1100
i110
i111
i112
i113
1120
i121
1122
i123
i130
i131
1132

G.3.4 4Add.VHZ

,o,
IO)
)o)
)O)
)o)
)o)
)o)
)03
)0)
)0)
)o)
)0)
)o)
)o)
)ot
)o)
)0)

)1)
11)
)o,
IO)
)o!
)1!
)0)
)0)
)o)
)1)
’1)
lo)
lo)
l1)
loﬁ
)0)
)o)

)1)
)1’
)1)
’1)
)1)
)1)
lo)
lo)
)0)
)1)
Io)
’O)

309

1133
I140
I141
I142
1143

i100
i110
i111
1112
i113
i120
i121
i122
i123
1130
1131
1132
i133
1140
1141
1142
1143

)o)
81)
)1)
)1)
ll)

)1)
’1)
’1)
)1)
,1’
lll
’1’
)1)
)1)
)1)
’1)
)1)
)1’
)1)
)1)
311
)1)

310

10.
11.

12.

13.

14.

15.

Bibliography

. Cohen, Kenneth Bruce. Model-Based Reasoning in Electronic Repair. MS thesis,

AFIT/GCE/ENG/90D-08, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1990 (AD-A230503).

. Cohen, Norman H. Ada as a Second Language. New York: McGraw-Hill Book Company,

1986.

. Comeau, Ronald C. Parallel Implementation of VHDL Simulations on the Intel iPSC/2 Hy-

percube. MS thesis, AFIT/GCE/ENG/91D-03, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990 (AD-A243760).

. Davis, Randall. “Diagnostic Reasoning Based on Structure and Behavior,” Artifical Intelli-

gence, 24:347-410 (December 1984).

Department of Defense. Requirement 64 - Microelectronic Devices. MIL-STD 454L. Wash-
ington: DOD, 10 September 1987.

. Dries, FIt Lt Walph W. Model-Based Reasoning in the Detection of Satellile Anomalies. MS

thesis, AFIT/GSO/ENG/90D-03, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990 (AD-A230535).

. Hamscher, Walter. “Modeling Digital Circuits for Troubleshooting: An Overview.” Proceed-

ings of the IEEE 6th Conference on Artificial Intelligence .ipplications. 2-8. New York: IEEE
Press, 1990.

. Lin, Dekang and Randy Goebel. “A Minimal Connection Model of Abductive Diagnostic

Reasoning.” Proceedings of the IEEE 6th Conference on Artificial Intelligence Applications.
16-22. New York: IEEE Press, 1990.

. Ng, Hwee Tou. “Model-Based, Multiple Fault Diagnosis of Time-Varying, Continuous Physical

Devices.” Proceedings of the IEEE 6th Conference on Artificial Intelligence Applications. 9-15.
New York: IEEE Press, 1990.

Perry, Douglas L. VHDL. New York: McGraw-Hill, 1991.

Randall Davis, Walter C. Hamscher. “Model-Based Reasoning: Troubleshooting.” Al at MIT
1, edited by Sarah A Shellard Patrick H Winston, Cambridge, Mass: MIT Press, 1990.

Roger Lipsett, Carl F. Schaefer, Cary Ussery. VHDL: Hardware Description And Design.
Boston: Kluwer Academic Press, 1991.

Scarl, E A, et al. “Diagnosis and Sensor Validation Through Knowledge of Structure and
Function,” IEEE Transactions on Systems, Man, and Cybernetics, 17:360-369 (May 1987).

Skinner, James M. A Diagnostic Sysiem Blending Deep and Shallow Reasoning. MS the-
sis, AFIT/GCE/ENG/88D-5, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988 (AD-A202547).

Stroustrup, Bjarne. The C++ Programming Language, second edition. New York: Addison-
Wesley, 1991.

311

Vita

David R. Griffin was born in Fort Sam Houston, Texas on August 21, 1965. He graduated
from Brookhaven High School, Brookhaven, Mississippi in May, 1983. He attended Mississippi State
University on a National Merit and ROTC scholarships. He completed a Bachelor of Science in
Electrical Engineering and Computer Engineering. While attending Mississippi State, he joined Tau
Beta Pi. Upon graduation, he was commissionéd a second lieutenant in the United States Air Force.
Awaiting his first active-duty assignment, he spent 9 months at the Waterways Experiment Station
in Vicksburg, Mississippi. He was assigned to the 3302 System Support Activity at Keesler AFB,
Mississippi. He was responsible for the developement of Merlin, a computer based instructional
system. In 1990 he was granted admission into the School of Engineering, Air Force Institue of

Technology at Wright Patterson AFB, Ohio.

Permanent address: Rt 2 Box 286 B
Bogue Chitto, MS 39629

312

FEPORT DU UMENTATION PAGE .
R e R e bl i ok b e
... December1992 . ! Master'’s Thesis __ _. _____
A VHDL Interpreter for Model-Based Diagnoses
David R. Griffin, Captain, USAF

(D 3T hgiLme o,
AR ST N

i ti 433-
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG /92D-03

T T T I N P S S S TP -3 10 SEChstimNG Noh o NG
' ' AGENCY RECTRT NUMAES
N - e
T = Sk N e T T
Approved for public release; distribution unlimited

Model-based reasoning permits diagnostic applications to be written without waiting for someone to become an
“expert” of the system. For model-based diagnostics, there must be a model to reason from. This thesis explores
using a VHDL description of the system as that model. A system based around a VHDL interpreter was written
specifically for a model-based diagnostic algorithm. Currently, the diagnostic system uses an algorithm by Dries.
This algorithm was derived from Scarl’s Full Consistency Algorithm. The system was designed to be modular
so that different diagnostic techniques could be implemented. It is divided into three parts: a VHDL parser, a
VHDL interpreter, and a set of routines to implement Dries’ Diagnose algorithm. The system can find stuck-at
faults on combinatorial digital circuits.

= e e e e e T YT R T RRGE S
VHDL, Diagnostics, Artificial Intelligence 2"7‘12.1 ST
— . -]

V7 5l ST e SN T A U 5 "‘r(‘u'yiu"- Oy 8h it ATIUN 19 SLCURITY i asSii ATICN SO TATION O ABSTRACT
OF ArpoaT F s PAGE OF ABSTGRATT

TINCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

MGE TRAT T) Mtariard corm M8 Hew D 89)

